

ДИНАМИКА, ПРОЧНОСТЬ МАШИН И КОНСТРУКЦИЙ

УДК 621.8

В.Е. АНТОНЮК, д-р техн. наук, В.С. АЛЕКСАНДРОВА Объединенный институт машиностроения НАН Беларуси, Минск

В.И. ТУРОМША, С.С. ДОВНАР, И.Л. КОВАЛЕВА, кандидаты техн. наук Белорусский национальный технический университет, Минск

Л.И. ТРУХНОВ

Белорусский автомобильный завод, Жодино

ОЦЕНКА НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ДЕТАЛЕЙ РЕДУКТОРА МОТОР-КОЛЕСА КАРЬЕРНОГО САМОСВАЛА БЕЛАЗ

Приводятся результаты конечно-элементного моделирования основных деталей редуктора мотор-колеса, используемого в карьерных самосвалах. Определены главные напряжения, эквивалентные напряжения, деформации и перемещения. Выявлены наиболее податливые места в конструкции редуктора мотор-колеса, указаны ожидаемые концентраторы напряжений. Даны рекомендации по увеличению жесткости конструкции редуктора мотор-колеса и уменьшению в нем концентрации напряжений

Ключевые слова: мотор-колесо, карьерный самосвал, метод конечных элементов, корпус редуктора, концентраторы напряжений

Введение

В современных карьерных самосвалах в качестве конечного привода ведущих колес используется мотор-колесо. Редуктор мотор-колеса (PMK) имеет ограниченные габариты, определяемые размерами шин. Поэтому в PMK детали должны иметь минимально возможные размеры при достаточной прочности и долговечности. В связи с этим очень важно представлять напряженно-деформированное состояние деталей и, прежде всего, корпуса PMK. Тогда легче избегать концентрации напряжений и поддерживать достаточную жесткость редуктора, которая важна для обеспечения точности зубчатых зацеплений.

Объект и цель работы

В качестве объекта исследования принята типовая конструкция редуктора мотор-колеса, используемого в карьерных самосвалах грузоподъемностью от 130 до 240 тонн.

Целью работы было исследование напряженно-деформированного состояния отдельных деталей и РМК в целом с выявлением наиболее податливых мест в его конструкции и определение возможных концентраторов напряжений.

Разработка конечно-элементной модели редуктора

Первоначально основные детали редуктора были построены и собраны в CAD-пакете (рисунок 1). Полу-

ченная 3D-модель была экспортирована в конечно-элементный пакет ANSYS Workbench.

Для построения МКЭ-модели использовались конечные элементы (КЭ), это 10-узельные элементы

Рисунок 1— Геометрическая модель редуктора мотор-колеса в разрезе

© Антонюк В.Е., Туромша В.И., Довнар С.С., Ковалева И.Л., Трухнов Л.И., 2011

solid187 в форме тетраэдров и 20-узельные элементы solid186 в форме гексаэдров [1—2]. Данные КЭ обладают квадратичной аппроксимацией перемещений и поэтому достаточно точны.

Сетки конечных элементов были созданы для отдельных деталей РМК. Затем сетки соединялись друг с другом парными наборами контактных элементов. При моделировании стыков корпусных деталей производилась виртуальная затяжка болтовых соединений силами до 180 кН на один болт.

МКЭ-модель РМК включала около 130000 элементов и около 800000 степеней свободы в узлах.

Исследование напряженно-деформированного состояния деталей РМК

Для расчета напряженно-деформированного состояния были использованы геометрические параметры и расчетные силовые параметры РМК 75132-2403010 карьерного самосвала грузоподъемностью 130 тонн. Расчетная нагрузка на РМК была принята равной 600 кH, что соответствует максимальной статической нагрузке.

Для выполнения конечно-элементного расчета были выделены 7 расчетных случаев нагружения и условий закрепления основных элементов конструкции редуктора, которые характеризуют возможные случаи его эксплуатации (таблица).

Оценка напряженно-деформированного состояния деталей редуктора мотор-колеса

Исследование напряженно-деформированного состояния выполнялось как для отдельных основных деталей РМК, так и для различных их сочетаний с целью учета взаимного влияния деталей друг на друга [3—5]. Для выявления проблемных мест в основных деталях РМК моделировалось их нагружение, соответствующее расчетным случаям из таблицы. В качестве материала корпуса РМК принята сталь 40Л, материала коронных шестерен — сталь 38ХМЮА.

Оценка напряженно-деформированного состояния основания корпуса редуктора выполнялась для расчетного случая PC1, когда сила в 600 кН приложена к переднему подшипнику под ступицей. Под действием этой силы основание корпуса изгибается, величина растягивающих напряжений составляет около 100 МПа, что можно считать некритичным для основания корпуса. На рисунке 2 представлена картина распределения в основании корпуса эквивалентного напряжения σ (напряжения по Мизесу).

Рисунок 2 — Распределение эквивалентных напряжений в основании корпуса редуктора в PC1 (вид изнутри)

Эквивалентное напряжение указывает на близость материала к началу пластической деформации и для него имеет решающее влияние разность между главными напряжениями [2]. В основании корпуса можно выделить три очага эквивалентных напряжений. Эквивалентные напряжения в этих очагах не достигают 100 МПа. Такие значения напряжений не являются опасными с точки зрения прочности основания корпуса, однако их неравномерное распределение свидетельствуют о неравнопрочности основания корпуса.

Под действием вертикальной силы в основании корпуса происходят изгибные деформации. На рисунке 3 показана картина распределения перемещений в основании корпуса, которые достигают порядка 0,5—0,6 мм. Максимальные перемещения в вертикальном направлении происходят на переднем конце основания корпуса в месте приложения силы.

Оценка напряженно-деформированного состояния корпуса редуктора выполнялась для расчетного случая PC2. В процессе моделирования были получены картины распределения максимального главного напряжения σ , и эквивалентных напряжений σ , (рисунок 4).

Оценка напряженно-деформированного состояния корпуса редуктора выполнялась для расчетного случая PC3 по эквивалентным напряжениям σ_i представлена на рисунке 5. Расчетный случай PC3 можно считать более спокойным по сравнению с PC2.

Оценка напряженно-деформированного состояния корпуса редуктора для расчетного случая РС4 представлена на рисунке 6 по эквивалентным напряжениям σ_r .

Рисунок 3 — Распределение перемещений в основании корпуса редуктора для расчетного случая PC1

Рисунок 4 — Распределение эквивалентных напряжений в корпусе редуктора для расчетного случая PC2

Таблица — Расчетные схемы нагружения РМК

Расчетный случай	Схема
PC1. Рассматривается основание корпуса редуктора. Сила 600 кН сосредоточена на заднем подшипнике	Entrant and Annual Annua
РС2. Рассматривается корпус редуктора. Сила 600 кН сосредоточена на переднем подшипнике	Be and the second secon
РСЗ. Рассматривается корпус редуктора. Сила 600 кН разложена на две составляющие по 300 кН и распределена на переднем и заднем подшипниках	
РС4. Рассматривается водило 2-го ряда, как элемент корпуса редуктора. Нагрузка от сателлитов моделируется посредством радиальных составляющих сил в 120 кН от окружного усилия в зацеплении солнечная шестерня—сателлит. Сила 600 кН не учитывается.	Remember 2014
РС5. Рассматривается водило 2-го ряда, как элемент корпуса редуктора. Нагрузка от сателлитов моделируется посредством радиальных составляющих сил в 120 кН от окружного усилия в зацеплении солнечная шестерня—сателлит. Сила 600 кН разложена на две составляющие по 300 кН и распределена на переднем и заднем подшипниках	Editional Barriers and Additional Barriers and Additio
РС6. Рассматривается корпус редуктора под действием силы в 600 кН и закрепления болтами с основным корпусом	Provide a series of the series
РС7. Рассматривается коронная шестебрня 2-го ряда. Сила 600 кН разложена на две составляющие по 300 кН, сосредоточенные на переднем и заднем подшипниках	Research of the second of the

На рисунке 7 показаны перемещения в корпусе редуктора, под действием сил водило начинает изгибаться, принимая в конце концов форму треугольника, максимальные перемещения достигают почти 70 мкм. Оценка напряженно-деформированного состояния корпуса редуктора для расчетного случая PC5 представлена на рисунке 8 по эквивалентным напряжениям σ_r . Максимальные значения и главных и эк-

Рисунок 5 — Распределение эквивалентных напряжений в корпусе редуктора для расчетного случая PC3

Рисунок 6 — Распределение эквивалентных напряжений в корпусе редуктора для расчетного случая PC4

Рисунок 7— Распределение перемещений в корпусе редуктора для расчетного случая PC4

вивалентных напряжений в PC5 составляют порядка 215 МПа.

Оценка напряженно-деформированного состояния корпуса редуктора для расчетного случая РС6 выполнялась для случая затяжки болтов, а затем — при нагружении. Для этого случая отмечено наличие очагов напряжений на каждом из болтов, напряжения достигают максимальных значений порядка 320 МПа. Под действием приложенной силы водило корпуса изгибается в направлении действия силы и максимальные перемещения при изгибе достигают порядка 0,46 мм.

Оценка напряженно-деформированного состояния редуктора выполнялась для расчетного случая РС7 и представлена по эквивалентным напряжениям на рисунке 9 и по перемещениям на рисунке 10.

Рисунок 8 — Распределение эквивалентных напряжений в корпусе редуктора для расчетного случая PC5

Рисунок 9 — Конечно-элементная схема редуктора для расчетного случая РС7

Рисунок 10 — Деформации и перемещения в редукторе для расчетного случая РС7

В расчетном случае РС7 под действием сил корпус редуктора изгибается, наибольшие значения перемещений вдоль оси *X* составляют порядка 0,5 мм, а суммарные перемещения достигают порядка 1,3 мм.

Для выявления наиболее податливых мест в конструкции РМК было выполнено моделирование деформированного состояния отдельных его деталей (PC7). Картины перемещений приведены на рисунке 11.

Согласно полученным результатам можно сделать выводы о том, что коронная шестерня второго ряда и водило второго ряда обладают значительной податливостью. Расчет зацепления и прочности зубчатых колес второго ряда должен выполняться с учетом изменения положения осей при нагружении максимальным крутящим моментом.

Рисунок 11 — Деформации и перемещения основных деталей редуктора для PC7

Корпус редуктора корпуса является достаточно жесткой деталью и мест избирательной податливости на нем не выявлено. Однако в корпусе редуктора имеются потенциальные концентраторы напряжений (рисунок 12):

конический участок на основании корпуса редуктора — зона 1;

зона 2 на внутренней поверхности основания корпуса редуктора;

радиусы закруглений в углах окон водила — зона 3.

Для увеличения запаса прочности корпуса редуктора рекомендуется:

увеличить толщину конического участка на основании корпуса редуктора в зоне 1;

увеличить толщину стенки — сделать более пологим радиус закругления в зоне 2;

увеличить радиусы закруглений в углах окон водила — зона 3.

Предлагаемые изменения были внесены в геометрическую модель корпуса редуктора и проверены для режима PC2. В результате эквивалентные напряжения в зоне 1 понизились с 88 МПа до 60 МПа, в зоне 2 с 91 МПа до 37 МПа и в зоне 4 — со 128 МПа до 97 МПа. Все рекомендации локальны и практически не увеличивают вес РМК.

Рисунок 12 — Расположение очагов растяжений и эквивалентных напряжений в редукторе мотор-колеса

Заключение

По результатам исследований основные детали конструкции редуктора РМК обладают достаточным запасом прочности и жесткости. Основание корпуса является достаточно жесткой деталью, мест избирательной податливости на нем не выявлено. Наибольшей податливостью среди деталей редуктора обладают коронная шестерня и водило второго ряда.

Полученные значения деформаций корпуса, водила и зубчатых колес необходимо учитывать при расчете зацепления и прочности зубчатых колес, так как эти деформации значительно превышают рекомендуемые допуски на изменения положения осей зубчатых колес.

Список литературы

- 1. Басов, К.А. ANSYS: справ. пользователя / К.А. Басов. М.: ДМК Пресс, 2005. 640 с., ил.
- ANSYS в руках инженера: практич. рук. 2-е изд., испр. М.: Едиториал УРСС, 2004. — 272 с.
- Полухин, П.И. Сопротивление пластической деформации металлов и сплавов: справ. / П.И. Полухин, Г.Я. Гунн, А.М. Галкин. — М.: Металлургия, 1983. — 352 с., ил.
- Зубчатые передачи: справ. / Е.Г. Гинзбург. 2-е изд. М.: Машиностроение, 1980.
- Кудрявцев, В.Н. Конструкция и расчет зубчатых редукторов: справ. пособие / В.Н. Кудрявцев, Ю.А. Державец, Е.Г. Глухарев. — М.; Л.: Машиностроение, 1971.

Antonjuk V.E., Aleksandrova V.S., Turomscha V.I., Dovnar S.S., Kovaleva I.L., Truhnov L.I. Estimation of the intense deformed condition of details of a reducer of a motor-wheel of a career dump-body truck

Results of is final-element modelling of the basic details of a reducer of the motor-wheel used in career dump-body trucks are resulted. The main pressure, equivalent pressure, deformations and movings are defined. The most pliable places in a design of a reducer of a motor-wheel are revealed, expected concentrators of pressure are specified. Recommendations about increase in rigidity of a design of a reducer of a motor-wheel and to reduction in it are given concentration of pressure.

Поступила в редакцию 03.05.2010