УДК 539.43

А.В. БОГДАНОВИЧ, д-р техн. наук; И.Н. ЛИС Гродненский государственный университет им. Я. Купалы, Лидский колледж, Республика Беларусь

О.М. ЕЛОВОЙ, канд. техн. наук

Аппарат Совета Министров Республики Беларусь, г. Минск

ЗАКОНОМЕРНОСТИ ИЗНАШИВАНИЯ СИЛОВОЙ СИСТЕМЫ «СТАЛЬ 45— СИЛУМИН» ПРИ ФРИКЦИОННО-МЕХАНИЧЕСКОЙ УСТАЛОСТИ С УЧЕТОМ ГЕОМЕТРИИ КОНТАКТА

Приведены результаты испытания металл-металлической силовой системы «цилиндрический образец из стали 45 диаметром рабочей части 10 мм — контробразец в виде частичного вкладыша из силумина на фрикционно-механическую усталость при главном вращательном движении в условиях консольного изгиба». Получена зависимость между объемным износом контробразца V_{κ} и линейным износом і пары трения. Предложена функция для описания зависимости интенсивности изнашивания от контактной нагрузки, которая может быть использована при расчетах долговечности силовых систем.

Ключевые слова: силовая система, фрикционно-механическая усталость, закономерности изнашивания

Испытания металл-металлической силовой системы на фрикционную и фрикционно-механическую усталость проводились в соответствии с методикой [1]. Образец-вал 1 из стали 45 с диаметром рабочей части 10 мм консольно закреплялся в шпинделе 2 испытательной машины УКИ-6000-2 и вращался с частотой 3000 мин⁻¹ (рисунок 1 a). Контробразец-вкладыш 3 шириной 4 мм с радиусом рабочей части 6 мм, выполненный из силумина, прижимался к опасному сечению образца 1 контактной нагрузкой F_{N} , величину которой задавали при помощи специального приспособления и поддерживали постоянной в процессе испытания каждой пары «образец-контробразец». В процессе испытаний обеспечивался капельный подвод смазочного материала — универсального всесезонного моторного масла Лукойл супер 15W-40.

В качестве предельного состояния был принят суммарный износ пары «образец — вкладыш» $i_{\text{пред}} = 100$ мкм, а база испытаний составила 10^7 циклов в соответствии с [1].

В процессе испытаний периодически проводилось измерение с помощью индикаторной головки с точностью 2 мкм величины линейного износа *i* фрикционной пары в локальных восьми точках, равномерно распределенных по периметру опасной зоны образца дискретным способом (см. рисунок 1 *б*).

На рисунке 2 показано несколько кинетических кривых накопления износа i(N) (средние значения от восьми измерений). Кривые имеют характерную форму — в начале опыта интенсивность линейного изнашивания высока и кривые имеют крутой подъем. Со временем интенсивность изнашивания снижается и кривые становятся более пологими. Такая закономерность оказалась справедливой для кривых, полученных при испытаниях как на фрикционную, так и на фрикционно-механическую усталость.

Рисунок 1 — Схема испытания на фрикционную (при *Q* = 0) и фрикционно-механическую (при *Q* > 0) усталость: *1* — образец; *2* — шпиндель; *3* — контробразец

Рисунок 2 — Кинетические кривые накопления износа при испытании на фрикционную (*a*) и фрикционно-механическую (*δ*) усталость при амплитуде напряжений изгиба σ₂ = 160 МПа

При визуальном анализе геометрии образцов и контробразцов после испытаний было установлено, что при одинаковом для всех пар трения предельном износе 100 мкм длина проекции *х* дорожки трения на горизонтальную ось (рисунок 3) контробразцов различна. Было сделано предположение, что в зависимости от условий эксперимента, в частности нагрузочного режима, изменяются доли износа образца и контробразца.

Рассмотрим контакт пары трения «вал — частичный вкладыш» исключительно с геометрической точки зрения, т. е. без учета упругости материалов, шероховатости поверхностей и т. д.

На рисунке 3 *а* показана пара трения, имеющая линейный износ *i*, целиком приходящийся на контробразец. Изношенный объем определяется площадью с мелкой штриховкой (в виде полумесяца), умноженной на ширину контробразца. Для сравнения на рисунке 3 б изображена пара трения, имеющая такой же линейный износ *i*, но обусловленный только износом

Рисунок 3 — Геометрия контакта пары трения «вал — частичный вкладыш»

образца (штриховая линия очерчивает исходный контур образца).

Для инженерно-конструкторских расчетов при проектировании ресурса узлов, имеющих сопряжения типа «вал — подшипник скольжения», удобно использовать линейный износ *i*, определяющий изменение зазора. Кроме того, его несложно измерять во время эксплуатации узла. В свою очередь потеря объема характеризует энергию разрушения при трении. Найдем зависимость между объемным износом контробразца V_{κ} и линейным износом *i* пары трения:

$$V_{\rm K} = f(i). \tag{1}$$

Площадь S_{κ} полумесяца (см. рисунок 3 б) определяли как разность площадей сегмента, ограниченного дугой *B'B* с радиусом r_1' и линией *B'AB*, и сегмента, ограниченного дугой *B'B* с радиусом r_2 и линией *B'AB*:

$$S_{\nu} = S_1 - S_2,$$
 (2)

где S_1 — площадь сегмента, ограниченного дугой *B'B* с радиусом r_1' и линией *B'AB*, мм²; S_2 — площадь сегмента, ограниченного дугой *B'B* с радиусом r_2 и линией *B'AB*, мм².

Площади S_1 и S_2 выразили через величину x' (см. рисунок 3 б):

$$S_{1} = \frac{r_{1}^{\prime 2}}{2} \cdot \left[2 \cdot \arcsin\left(\frac{x'}{2 \cdot r_{1}'}\right) - \sin\left(2 \cdot \arcsin\left(\frac{x'}{2 \cdot r_{1}'}\right)\right) \right]; (3)$$
$$S_{2} = \frac{r_{2}^{2}}{2} \cdot \left[2 \cdot \arcsin\left(\frac{x'}{2 \cdot r_{2}}\right) - \sin\left(2 \cdot \arcsin\left(\frac{x'}{2 \cdot r_{2}}\right)\right) \right], (4)$$

где r_1' — радиус изношенного сечения образца, мм; r_2 — радиус рабочей поверхности контробразца, мм.

Вывод функции x = f(i) является громоздким и здесь не приводится. Покажем только конечный результат:

$$x = \frac{\sqrt{-i \cdot (i - 2 \cdot r_1') \cdot (i + 2 \cdot r_2) \cdot (i - 2 \cdot r_1' + 2 \cdot r_2)}}{i - r_1' + r_2}, \quad (5)$$

где *i* — линейный износ пары трения (включает износ контробразца и односторонний износ образца), мм.

Используя формулу

$$V_{\rm K} = S_{\rm K} \cdot b$$
, (6)
где *b* — ширина контробразца, мм, и зависимости
(2)—(5), получим (1).

В свою очередь объемный износ образца определяли по формуле:

$$V_{o} = b \cdot \frac{\pi \cdot \left(d_{1}^{2} - d_{2}^{2}\right)}{4},$$
(7)

 $(\cap$

где d_1 — исходный диаметр рабочей части образца, мм; $d_1 = 2 \cdot r_1$ (см. рисунок 3 *a*); d_2 — диаметр изношенной рабочей части образца, мм; $d_2 = 2 \cdot r'_1$ (см. рисунок 3 *б*).

Используя функцию (1), перешли от зависимости i(N) (см. рисунок 2) к зависимости $V_{\kappa}(N)$ (рисунок 4). Зависимость $V_{\kappa}(N)$ хорошо аппроксимируются прямой линией.

Вернемся к предположению о разных долях износа образца и контробразца. Учитывая предельный линейный износ в 100 мкм, представим возможные варианты соотношений линейных износов образца i_0 и контробразца i_k (таблица, столбцы 1 и 2). Используя зависимости (1) и (7) перешли от линейных износов к объемным (см. таблицу, столбцы 3 и 4). При расчете массового износа (см. таблицу, столбцы 5 и 6) принимали плотность стали

Рисунок 4 — Зависимость объемного износа контробразца $V_{\rm x}$ от наработки N, циклов, при испытании на фрикционную (*a*) и фрикционно-механическую (*б*) усталость при амплитуде напряжений изгиба $\sigma_{\rm a} = 160~{\rm Mma}$

45 равную 7500 кг/м³, силумина — 2650 кг/м³. График зависимости потери массы контробразца $m_{\rm k}$, г, от потери массы образца $m_{\rm o}$, г, показан на рисунке 5 сплошной линией. Экспериментальные точки получены следующим образцом. Измеряли величину x' (см. рисунок 3 δ) на контробразцах с точностью 0,01 мм. У образцов измеряли диаметры d_1 до опыта и d_2 после опыта с той же точностью. Используя зависимости (1) и (7) и указанные плотности материалов получили значения $m_{\rm k}$ и $m_{\rm o}$. Точки показаны на графике (см. рисунок 5). Они расположены близко к теоретической кривой. Отклонения следует связать с недостаточно высокой точностью измерений.

На рисунке 5 видно, что основная масса точек группируется вблизи некоторой области теоретичес-кой кривой. Это говорит о том, что существует определенное соотношение между массовым износом контробразца и образца. Поэтому построили график (рисунок 6) зависимости доли массового износа кон-

Линейный износ, мкм		Объемный износ, мм ³		Массовый износ, г	
образ- ца	контр- образца	образца	контр- образца	образца	контр- образца
1	2	3	4	5	6
0	100	0	1,251	0	0,00331
5	95	0,63	1,168	0,0047	0,00309
10	90	1,26	1,086	0,0094	0,00288
15	85	1,88	1,005	0,0141	0,00266
20	80	2,51	0,925	0,0188	0,00245
25	75	3,13	0,846	0,0235	0,00224
30	70	3,76	0,769	0,0282	0,00204
35	65	4,38	0,694	0,0329	0,00184
40	60	5,01	0,620	0,0375	0,00164
45	55	5,63	0,549	0,0422	0,00145
50	50	6,25	0,480	0,0469	0,00127
55	45	6,87	0,413	0,0516	0,00109
60	40	7,49	0,349	0,0562	0,00092
65	35	8,12	0,288	0,0609	0,00076
70	30	8,73	0,230	0,0655	0,00061
75	25	9,35	0,176	0,0702	0,00047
80	20	9,97	0,127	0,0748	0,00034
85	15	10,59	0,083	0,0794	0,00022
90	10	11,21	0,046	0,0841	0,00012
95	5	11,82	0,016	0,0887	0,00004
100	0	12,44	0	0,0933	0

Таблица — Теоретически возможное соотношение линейного, объемного и массового износов образца и контробразца

тробразца к общему износу m_{κ}/m_{Σ} от доли массового износа образца к общему износу m_{o}/m_{Σ} . Наибольшая доля массового износа контробразца из силумина, имеющего твердость и прочность примерно в 3 раза ниже, чем у стального образца, составила всего 30 % от общей потери массы. Следует отметить, что большинство точек (см. рисунок 6) указывают на долю износа контробразца всего 1...10 %.

На рисунке 7 показан график зависимости интенсивности массового изнашивания контробразца *Im*_к от интенсивности массового изнашивания образца *Im*_о. Результаты испытаний на фрикционную усталость аппроксимируются параболической зависимостью (кривая *1* на рисун-

Рисунок 5— Зависимость потери массы контробразца m_к от потери массы образца m₂

Рисунок 6 — Зависимость доли массового износа контробразца к общему износу $m_{\rm k} / m_{\Sigma}$ от доли массового износа образца к общему износу $m_{\rm o} / m_{\Sigma}$

ке 7), а результаты испытаний на фрикционномеханическую усталость – логарифмической (см. кривые 2 и 3 на рисунке 7).

Графики можно условно разделить на два участка. Первый участок находится в области малых

Рисунок 7 — Зависимость интенсивности массового изнашивания контробразца $Im_{\rm x}$ от интенсивности массового изнашивания образца $Im_{\rm 0}$ при испытании на фрикционную (1) и фрикционно-механическую усталость при амплитуде напряжений изгиба $\sigma_{\rm a} = 160$ МПа (2) и $\sigma_{\rm a} = 256$ МПа (3)

значений интенсивности массового изнашивания образца Im_0 . На этом участке с увеличением изгибающих напряжений σ_a интенсивность массового изнашивания контробразца Im_{κ} снижается. На втором участке, расположенном правее, эта закономерность изменяется зеркально.

На рисунке 8 *a*, *б* показаны зависимости интенсивности массового изнашивания Im_{o} и Im_{κ} от контактной нагрузки F_{N} при различных значениях изгибающих напряжений σ_{a} .

Характер изменения кривых на рисунке 8 *a* и рисунке 8 *б* остается неизменным. Для кривой *I* характерно наличие пика интенсивности изнашивания при контактной нагрузке $F_N = 250$ H, после которого наступает его снижение в диапазоне контактных нагрузок $F_N = 250...300$ H. Затем вновь наблюдается рост интенсивности изнашивания. С увеличением изгибающих напряжений σ_a пик интенсивности изнашивания смещается в об-

Рисунок 8 — Зависимость интенсивности массового изнашивания контробразца $Im_{a}(a)$ и интенсивности массового изнашивания образца $Im_{k}(b)$ от контактной нагрузки F_{N} при различных значениях амплитуды напряжений изгиба σ_{a} : 1 - 0 МПа; 2 - 160 МПа; 3 - 256 МПа

ласть больших контактных нагрузок F_N (см. кривые 2 и 3 на рисунке 8 a, δ). А дальнейший рост интенсивности изнашивания предположительно находится выше предела контактных нагрузок F_N , принятых при данных испытаниях. Наличие локального минимума интенсивности изнашивания при аналогичных условиях испытаний на трение со смазкой наблюдалось в работах [2, 3].

Полагая, что с увеличением контактной нагрузки интенсивность изнашивания возрастает, кривые 2 и 3 можно продлить (см. штриховые линии на рисунке 8 a, δ).

Полученные кривые можно описать функцией вида:

$$y = m_1 \cdot e^{-\frac{(x-c_1)}{a}} + m_2 \cdot e^{\frac{(x-c_2)}{b}},$$
(8)

где m_1, m_2 — параметры, определяющие масштаб кривой по вертикали; c_1, c_2 — параметры, определяющие смещение кривой относительно начала координат; a — параметр, определяющий крутизну фронтов локального максимума; b — параметр, определяющий крутизну правого участка; e — основание натурального логарифма.

На рисунке 9 показана зависимость максимальной температуры t_{max} вблизи зоны контакта от величины контактной нагрузки F_N . Точки на графике аппроксимируются прямой линией (сплошная линия на рисунке 9). Видно, что с увеличением контактной нагрузки F_N максимальная температура t_{max} вблизи зоны контакта растет. Это подтверждает гипотезу о первостепенности силового фактора в процессах трения. Наличие напряжений изгиба не оказывает существенного влияния на изменение температуры.

Рисунок 9 — Зависимость максимальной температуры tmax вблизи зоны контакта от величины контактной нагрузки F_N при различных значениях амплитуды напряжений изгиба σ_a

Заключение. Проведены испытания на фрикционную и фрикционно-механическую усталость силовой системы «сталь 45 — силумин». Дан анализ контакта пары трения «вал — частичный вкладыш» с геометрической точки зрения. Получена зависимость между объемным износом контробразца $V_{\rm k}$ и линейным износом *i* пары трения. Характер зависимости — линейный (см. рисунок 4 *a*, *б*). Показано, что доля массового износа контробразца из силумина от общего массового износа находится в пределах 1...30 % (см. рисунок 6). Предложена функция (8) для описания зависимости интенсивности изнашивания от контактной нагрузки (см. сплошные и штриховые линии на рисунке 8 *a*, *б*). Функция (8) может быть использована при расчетах долговечности силовых систем. Приведена зависимость максимальной температуры $t_{\rm max}$ вблизи зоны контакта от величины контактной нагрузки F_N при различных значениях изгибающих напряжений σ_a (см. рисунок 9).

Список литературы

- Трибофатика. Методы износоусталостных испытаний. Испытания на фрикционно-механическую усталость: СТБ 1448–2004. — Минск: ГОССТАНДАРТ, 2004. — 14 с.
- Цыбанев, Г.В. Влияние величины и длительности циклического нагружения на триботехнические характеристики стали / Г.В. Цыбанев, О.Н. Белас // Проблемы прочности. — 2005. — №1. — С. 96–107.
- Дослідження кінетики зношування хромовмісних покриттів за умов граничного мащення / М.І. Пашечко [и др.] // Прогресивни технологии та системи машинобудовання. — 2009. — № 38. — С. 177–182.

Bogdanovich A.V., Lis I.N., Yelovoy O.M.

Regularities of chafing of the 0,45 % carbon steel — siluminum active system at mechano-sliding fatigue account contact geometry

The tests results of the 0,45 % carbon steel — siluminum active system at mechano-sliding fatigue is given. Dependence between volume wear of counter specimen V_{e} and linear wear i friction pairs is gained. Function for the exposition of dependence of wear rate from contact loading which can be used at calculations of longevity of active systems is offered.

Поступила в редакцию 26.11.2012.