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ANALYTICAL AND NUMERICAL RESEARCH OF THE FORMS
OF EQUILIBRIUM OF A LIQUID LIMITED VOLUME ON A ROTATING

HORIZONTAL BASE

The article studies axisymmetric forms of drop relative equilibrium on a rotating disk due to the action of gravita-
tional, centrifugal and capillary forces. It is obtained that there are two main types of forms of equilibrium: with
simply connected and not simply connected sets of points of contact of liquid and solid phases. A number of state-
ments about these forms of equilibrium are proved analytically. The findings are consistent with the numerically
found drop shapes for various examples of the input data. Curves for determination of dependencies between vari-
ous parameters of liquid volume in relative rest are constructed.
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Introduction. In various industries, processes that
use the movement of a liquid layer on the surface of
a rotating disk are widely used. These include the phe-
nomena of fiber formation by centrifugal-disk me-
thod, application of coating and lubrication on a flat
surface by rotation. The problems of determining
the shape of the free surface of a rotating limited vo-
lume of liquid and the movement of a liquid layer on
a rotating solid body belong to fundamental problems
in the field of hydromechanics. The book [1] is an ex-
ample of studying the figures of relative equilibrium
of a liquid in a rotating coordinate system, taking
into account the external pressure and self-gravity of
the liquid. The work [2] is devoted to the mathema-
tical study of the behavior of a liquid in conditions
of full or partial weightlessness, implemented dur-
ing space flights. The book [3] addresses the issue of
flow around a rotating disk in both free and confined
space, and also examines the flow around some other
bodies, there is a comparison with experimental data.
The paper [4] considers the problem of flat stationa-
ry motion of a thin layer of a viscous incompressi-
ble liquid on the surface of a circular horizontal cy-
linder rotating around its axis in the field of gravity.
In the articles [5, 6], the study also covers the non-sta-
tionary motion of the liquid layer. In the framework

of the paper [7], an upper bound estimation is found
for the stability margin of a circular cylindrical equi-
librium state of a rotating liquid enclosed between
two parallel plates. In the work [8], the stability of
stationary axisymmetric flows to non-axisymmetric
perturbations is studied. The articles [9, 10] are devo-
ted to the study of the forms of relative equilibrium of
axisymmetric and non-axisymmetric droplets on a ro-
tating horizontal base and the comparison of theore-
tical results with experimental data. In the work [11],
the results of numerical, analytical and experimental
studies of a viscous liquid layer on a rotating vertical
disk are presented. Experimental studies have shown
that at low rotational speeds, the relative equilibrium
of the layer on the disk is possible [10]. As the rotation
speed increases, the layer splits into trickles in the ra-
dial direction. In this paper, special attention is paid to
analytical studies of the relative rest of isolated drop-
let layers and layers from the annular contact area of
the liquid and solid phases.

Problem statement. The behavior of a liquid drop
is considered which is located on a horizontal base ro-
tating around an axis perpendicular to its surface with
a constant angular velocity. It is assumed that the drop
has a rotational symmetry relative to the axis and is in
a state of equilibrium in a mobile coordinate system
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that is rigidly connected to the substrate. The contact
angle o, the modulus of the gravitational accelera-
tion g, the drop mass M, the fluid density p, the sur-
face tension coefficient o, atmospheric pressure p,, and
the angular velocity modulus » are known. We intro-
duce a relative cylindrical coordinate system (7, @, 2),
z axis of which coincides with the axis of disk rotation
and is directed upwards. The field of forces of the mass
unit in this system is decomposed into the centrifugal
r-component F, = o’r, and the z-component F, = —g.
Taking this into account, as well as the relative rest
of the liquid, the Navier—Stokes equations in the cy-
lindrical coordinate system can be integrated to find
the pressure distribution p in the drop:

1
p=5pw2r2—pgz+pl, (1

where p, is a constant that has the meaning of the li-
quid pressure at the point » = 0, z = 0, if there is a li-
quid at this point. Let the curve A be the result of the
intersection of the free surface of a drop with a certain
half-plane ¢ = const. Due to the symmetry of the drop,
this curve completely determines the shape of its free
surface in the system (r, 7). We choose the positive
direction of circumventing the curve A so that when
going around the area occupied by the liquid is loca-
ted on the right, provided that to align the r axis with
the z axis, the first one must be rotated counterclock-
wise at an angle of 90°. Let 6 be the counterclock-
wise measured angle between the positive direction
of the r axis and the tangent vector to the curve under
consideration at this point, indicating the positive di-
rection of circumvent A. Let us set:

X =sin@, y = —cos0. (2)

We introduce dimensionless quantities 7,, z,, Ap,
by relations » = Rr,, 7= Rz, p, — p, = po*R*Ap,, and
Weber and Froude numbers by formulas We = po’R’*/c,
Fr=®?R/g. Then, taking into account (1), the Laplace
formula [2] for surface tension can be written as

x dy

dx
dr,

n, dz,

1
= We(—zr(f +Fr'z, —Apo) = f(r.2)-

X
=+
Ty

3)

Equations (3) are convenient for determining
a number of qualitative properties of possible curves A.

If the surface of the drop contact with the disk is
a circle, then the task of determining the drop shape
will be called a task of type I; a task of type II is the task
corresponding to the annular contact region of the lig-
uid and solid phases. We introduce a natural para-
metrization r, = ry(f), z, = z,(f) of the curve A, where
t is a natural parameter. Let the parameter ¢ increase
with a positive circumvent of the curve A, and let
the beginning of the curve correspond to the value
t=0,anditsend — r= T, ,. Then from (2), (3) we get
the system:
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d*z dr, dr dz
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The system (4) is convenient for numerical de-
termination and investigation of the forms of relative
equilibrium of the drop. It must be supplemented with
boundary conditions and an integral condition of a gi-
ven mass. For the task of type I, they look like:

day o dn g dg e
070 G 0=t )= —sina; )
%(Temf)= cosa,; k (0)=0’ ZO(Tf"d)z Zy-

For the task of type II, the boundary conditions
have the following form:

. dar,
7,)=sine; %io)

< (0) = Zo(Tm) =Z,.

The drop mass is set by the ratio

T,

end

%(o) =

_ 4
a (

_dr
dt =

—(T,,,)=coso;
dt

(6)

T,

M=2npR3[ Idn)(t)zo(t)%(t)dt— %(ro (T,,.) - rO(O)Z)] - (D

Here Z, is the gz,-coordinate of any point on
the disk surface. Of the four boundary conditions im-
posed on the derivatives of functions z,(#) and r,(?), it is
sufficient to select three and take into account the sign
on the right side of the fourth condition.

Results of the analytical study of forms of equilib-
rium. Analysis of system (4) makes it possible to draw
the following conclusions:

1. There are no two different tangent curves that
satisfy system (4) and have the same curvature vector at
the tangent point.

2. For abounded drop, there are no straight sec-
tions of the A curve.

3. There are no inflection points of the A curve
where the tangent to this curve is parallel to the axis 7,
Or axis z,.

Analysis of the system (2), (3) leads to the follow-
ing statements:

1. The parameterization function z,(#) cannot
have more than one local maximum, or, equivalently
taking into account its continuity, cannot have local
minima on the interval (0, T, ,).

2. The parameterization function r,(f) cannot
have a local maximum on the interval (0, 7,,,), fol-
lowed by a local minimum belonging to this interval
with increasing argument 7.

These statements allow us to draw the following
conclusions about possible forms of equilibrium of
the drop on a rotating disk. By investigating the task of
type I, itis possible to obtain convex dropsifthe curve A
has only a decreasing section of the function z,(7).
If the curve A has an increasing section of both func-
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tions r,(#) and z,(f), which is replaced by a decreasing
section of the function z,(f) when the curve is positive-
ly traversed, we get drops with a concavity zone, as is
seen in Figure 1 a. In this case, if the contact angle is
acute or right, then r,(7) grows over the entire curve.
If the contact angle is obtuse, then the decreasing sec-
tion z,(#) consists of the increasing section r,(#), which
is replaced by the decreasing section of the function
r,(?) as t increases.

In the task of type II, with a ring contact area at
an obtuse contact angle, the section of the decreas-
ing function r,(#) and increasing function z,(#) with
a positive circumvent of the curve A is replaced by
the increasing section of both functions. Then there
is a section of decreasing function z,(f) and increas-
ing function r,(f), which in turn is followed by a sec-
tion of decreasing both functions, as in Figure 1 5. In
this case, we set with P, and P, the planes parallel to
the surface of the disk and passing through the near-
est R, to the z axis and farthest from it points R, of
the curve A, respectively. Ifthe contact angle is acute or
right, then the first and last named sections are missing.
Let the area where the function 7,(f) increases be
indicated as A,. This section is present in the tasks
of both types for all forms of the drop, and it is
the only one. If the contact angle is greater than 90°,
then there is also a section A;, where 7,(7) and z,(f) are
decreasing functions, and for the task of type 1I there
will also be a section A,, where r,(f) decreases and
Z,(?) increases. In the task of type II and in the case
of a drop with a concavity zone in the task of type I,
the section A, consists of sections A,, and A,,, where
z,(?) increases and decreases respectively. For the task
of type I, we define the P, plane in the same way as for
the task of type II.

The study of the system (2), (3) also makes it pos-
sible to make the following observations about the pos-
sible forms of the curve A:

* A2 —,
Zo

A3 g
Io
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a
Zo
Al / To
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b

Figure 1 — Schematic representation of layers of:
a—type I; b — type 11

1. There are no inflection points on sections A,,
and A,. Moreover, the curvature vector at any point of
these sections is directed inside the drop.

2. Inthe task of type I, if a drop has a concavity
zone, there is only one inflection point of the curve A.

3. Let us consider the task of type II with a con-
tact angle greater than 90°, and the point A4 of the sec-
tion A, and the point B of the section A, are equally
spaced from the z axis. Then the distance from point A4
to P, and the value of x at point 4 do not exceed, respec-
tively, the distance from point Bto P, and the value of x
at point B. If the curvature vector at point B is directed
inside the drop, then at point A4 the curvature vector is
also directed inside, and its modulus is greater.

4. Let the contact angle be greater than 90°, and
point A4 of the section A; and point B of the section
A, are equally spaced from the z axis. Then the dis-
tance from point 4 to P,, the value of x at point B, and
the modulus of the curvature vector at point B do not
exceed, respectively, the distance from point B to P,
and the value of x at point 4 and the value of the curva-
ture vector at point A.

5.  The highest point of the drop is always no
closer to the axis z, than the beginning of the curve A,
and no further from this axis than the end of this curve.

Analysis of the system (2), (3) taking into account
the integral and boundary conditions (5), (7) leads to
the following conclusions:

1. For the task of type I with settled p, o, ® > 0,
g> 0, a, increasing the drop radius will first lead to the
impossibility of the existence of a convex drop, then
to the impossibility of the existence of a solution of
the system (4), (5), (7), complying with the physical
and mathematical sense.

2. With the settled p, o, ® > 0, g > 0, a, there is
such a value of mass M, that a drop of mass M > M,
cannot exist.

Figure 2 shows the results of experimental studies
of the movement and decay of isolated ring-shaped
layers of the oil PFMS-4. With slow rotation, as is seen
in Figure 2 a, it is possible to rotate the disk and the
layer as a whole. With an increase in the angular speed of
rotation, the stream-threads fly in the radial direction.

Results of numerical study of forms of equilibrium.
In the task of type 1, all parameters of the drop at a set-
tled characteristic distance are uniquely determined by
the value x'(0), where the stroke means the derivative
with respect to r,. The modulus of this value is equal
to the curvature of the curve A, given in dimensionless
coordinates (r,, z,), at a point lying on the axis z, or
the curvature of the drop in the center. Let R, be the ra-
dius of the drop with x’(0) = 0, and X, be the value of
x'(0) with the characteristic distance R.

The Table shows the values of physical quantities for
three sets of parameters used in numerical calculations.

From Figure 3, we can conclude that the drop
radius increases with the curvature in the center.
The same result can be reached analytically in the
course of studying the system (2), (3).
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Figure 2 — Shape of the ring-shaped layers of the oil PFMS-4
on the disk: ¢ — without rotation; b — with rotation

Figures 6 and 7 show graphs that reflect the pos-
sible shapes of the A curve under various conditions
for the task of type I. The graphs are given in dimen-
sionless coordinates, where the characteristic distance
is the radius of the drop represented by a solid line in
the corresponding figure. In all cases, p = 1000 kg/m?,
o =10.07286 N/m. In the Figures 6 and 7, the solid line
corresponds to a weightless drop with values g= 0 m/s?,
® = 0 rad/s, the dashed line with short strokes —
g£=9.81 m/s?, ® = 8x rad/s, the dashed line with long
strokes — g = 15 m/s?, ® = 4 rad/s, the dash-dotted

Table — Parameters corresponding to various graphs in the Figures 3—5

Set of Set of Set of
parameters I parameters I1 parameters 111
Line Solid line Dotted line Dashed line
p, kg/m? 1000 1000 800
o, N/m 0.07286 0.07286 0.04
o 60° 120° 90°
®, rad/s 6n n 8n
g, m/s? 9.81 9.81 9.81
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Figure 3 — Dependence of the radius R of the drop on the curvature

in its center

Figure 4 — Dependence of the mass M of the drop on the curvature

in its center

line — g = 4 m/s?>, ® = 4n rad/s, the dotted line —
g=1m/s?, ® = 8n rad/s. The contact angle in the Fi-
gure 6 is equal to oo = 60°, the mass of the drop in
this Figure M = 0.0004 kg. In the Figure 7: o = 120°,

Figure 5 — Dependence of the height Z of the drop in the middle

on the curvature in the center

Figure 6 — Drop shapes with an acute contact angle
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Figure 7 — Drop shapes with an obtuse contact angle

M = 0.0008 kg. The inflection point in the section A,,,
if there is, and the endpoint of this section are marked
with points. It can be concluded that an increase in
gravity contributes to greater pressure of the drop to
the disk. On the graphs, the disk surface is selected as
the zero level z,, i. e. Z, = 0. When constructing
the curves, we used the fact that the shape of the curve A
is uniquely dependent on the curvature at its beginning
and the method of targeting. It is based on the secant
method to select curvature in the center of the drop,
which is necessary for the drop mass to correspond to
the specified value of M with the required accuracy.
Conclusion. In this paper, the equations of relative
rest of the liquid drop and the isolated symmetric vo-
lume of a liquid layer on a rotating disk are obtained,
analytical studies and numerical solutions of these
equations are carried out depending on the characte-
ristic parameters of the problem. The forms of equilib-
rium of the liquid limited volume obtained by numeri-
cal methods, as well as the qualitative dependences
between some parameters of the drop, are consistent
with the results of analytical study of the mathematical

E.B. ABAEMUUK

model and experimental results [10]. The research re-
sults can be used to analyze the thickness of the coat-
ing and lubricant on the rotating horizontal surface of
the disk.
The work was supported by grants from BRFFR (pro-
ject FISR-225) and RFBR (projects 18-01-00762 and
18-51-00006).
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AHAJIMTUHECKOE N YNCNNIEHHOE UCCJIEAOBAHUE ®OPM
PABHOBECUA OTPAHUYEHHOIO OBbEMA XXUAKOCTHU
HA BPALLAIOWWEMCH TOPU3OHTAJIbBHOM OCHOBAHUA

Hcenedytomes ocecummempuytoie (hopmvl OMHOCUMENbHO20 PABHOBECUS KANAU HA 8paujaroujemcs oucke, 00yc-
N06/1eHHble OelicmBUeM epasUmMauUOHHbIX, UEHMPOOEICHbIX U KanualsapHblx cur. Iloayueno, umo 603modcHbL 06a
OCHOBHBIX MUNA (YOPM PaHOBecUs: ¢ 0OHOCEA3HBIM U HEOOHOCBAZHbIM MHONCECMBOM MOYeK KOHMAKMA HCUOKOI
u meepaoil haz. Anarumuuecku 0okazan psaod ymeepxucoenuil 0 danHvix hopmax pasnogecus. Iloryuenmnvie 6ol-
600bl CO2AACYIOMCS € YUCAEHHO HAUOCHHbIMU (POPMAMU Kaneab U IKcHnepuMmeHmanvhoimu peyaomamamu. Ilo-
cmpoenbsl Kpugbie 05 onpedenenust 3a8UcCUMOCmert Mexcoy pasiudHbiMu napamempamu 00sema icuoKocmu 6 ee

OMHOCUMENbHOM NOKoe.

Karouesvte caosa: spawarowuiicss ouck, omuocumenvHoe pasHogecue, ypasHenus Haeve—Cmokca, ghopmyna
Jlanaaca, nogepxnocmuoe HamsceHue, Kpaegoii yeon CMA4UBanus, 0CeCUMMEeMpU4HAsl Kanas
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