УДК 669.715:66.091.3

Д.В. ОРДА научный сотрудник E-mail: dmitry_orda@mail.ru Объединенный институт машиностроения НАН Беларуси, г. Минск, Республика Беларусь

Поступила в редакцию 28.01.2021.

ОПТИМИЗАЦИЯ ПРОЦЕССА СИНТЕЗА НАНОСТРУКТУРИРОВАННОГО КАРБИДО-КОРУНДОВОГО МОДИФИКАТОРА СИЛУМИНОВ

Разработана математическая модель процесса синтеза наноструктурированного модификатора TiC-Al₂O₃ методом газофазного осаждения на основе системы исходных материалов TiO₂-Al-C. Для построения уравнения отклика в виде полинома 2-й степени проведение экспериментов осуществлялось в соответствии с моделью ротатабельного композиционного плана 2-го порядка с тремя факторами, включающей 20 опытов. В качестве основных факторов рассматривались: температура изотермической выдержки T (°C), время изотермической выдержки t (c) и доля хлорирующего компонента Q (масс.%), а в качестве функции отклика — доля карбида титана q(TiC) (масс.%) в составе синтезируемого модификатора. В работе описаны результаты расчетно-экспериментального моделирования, из которых можно заключить, что для получения модификатора с наибольшим содержанием TiC, параметры синтеза должны быть следующие: T = 900-930 °C; t = 2-2,5 ч; Q = 4-4,5 масс.%. Полученный TiC-Al₂O₃ модификатор содержит 34 масс.% TiC и имеет наноструктурированное строение с частицами сферической и нитевидной формы, диаметр которых не превышает 100 нм.

Ключевые слова: модификатор, наночастицы, карбид титана, корунд, оптимизация, математическая модель

DOI: https://doi.org/10.46864/1995-0470-2020-1-54-71-79

Введение. В настоящее время в машиностроении и других отраслях промышленности наблюдается все более широкое использование литейных алюминиевых сплавов, в результате чего к ним предъявляются повышенные требования прочности и трибомеханических свойств. Эффективным решением такой задачи является воздействие на структуру литейных сплавов алюминия путем их модифицирования тугоплавкими керамическими частицами, в качестве которых широко используют микропорошки оксидов и карбидов [1-8]. Согласно литературным данным, одним из способов модифицирования сплава является введение в расплав частиц оксидов, что приводит к диспергированию структуры и повышению трибомеханических характеристик сплава. Так в [1] приводятся данные по армированию сплава АА2618 (AlCu2Mg1.5Ni1Fe1) 6 масс.% диоксида титана (TiO₂), что обеспечивает повышение триботехнических свойств. Аналогичные данные приводятся в работах [2-4], где в качестве армирующей добавки использовался дисперсный порошок корунда (Al₂O₃). При этом в [2] показано, что с уменьшением размера частиц корунда, эффективность модифицирования возрастает, в результате чего достигается повышение твердости сплава А17075 на 72 % при введении 6,75 масс.% Al₂O₃. Аналогичные данные приводятся в работе [3], в которой показано, что модифицирование сплава Д16 порошком Al_2O_3 с размером частиц 20–40 мкм в количестве 0,05–0,1 масс.% обеспечивает повышение твердости и предела прочности в 1,2–1,4 раза. При этом максимальная эффективность воздействия модификатора на структуру сплава наблюдается при использовании наноразмерных частиц. Так в [4] приводятся сравнительные данные по использованию в качестве модификатора Al_2O_3 с размером частиц 25 мкм и 40 нм и делается вывод, что наноразмерный модификатор оказывает более эффективное воздействие на структуру исвойства сплава LM25 (AK8).

В [5–7] модифицирование сплава Al6061 осуществлялось наноразмерными частицами карбида вольфрама (WC), TiC и карбида кремния (SiC). Согласно приведенным данным, модифицирование частицами WC (300 нм) в количестве 5–15 масс.%, приводит к незначительному снижению коэффициента трения, однако износостойкость повышается в 2–3 раза. В работе [6] приводятся данные модифицирования сплава A356 наноразмерным карбидным модификатором TiC в количестве 0,03 масс.%. При этом с ростом твердости и прочности сплава наблюдается повышение вязкости на 20–50 %. Аналогичные результаты также получены при модифицировании сплава A356 наноразмерными частицами WC и SiC. Приведенные данные подтверждаются в работе [7], согласно которым при модифицировании сплава A356 наноразмерными частицами SiC в количестве 2 масс.% наблюдается рост предела прочности и вязкости одновременно.

Ряд исследований свидетельствует о том, что комплексное модифицирование карбидо-корундовым порошком обеспечивает более интенсивное воздействие на структуру и свойства сплава. Так при введении 1 масс.% SiC совместно с 1 масс.% Al₂O₃ эффект повышения предела прочности и вязкости возрастает на 20-25 % в сравнении с однокомпонентным модифицированием 2 масс.%. SiC [7]. Аналогичные данные приводятся и в [8], согласно которым модифицирование силумина АК12 нанокомпозитными порошками интерметаллид/оксид обеспечивает повышение механических свойств сплава. Так при введении порошка Si/Al₂O₃ наблюдается максимальный эффект упрочнения с одновременным повышением пластичности в сравнении с модификаторами, содержащими частицы NiAl, FeAl, NiAl/Al₂O₃.

Согласно результатам [7, 8], наиболее эффективное модифицирующее воздействие оказывают наноструктурированные композиционные наполнители. В настоящее время существует ряд технологических приемов получения карбидо-корундовой композиции на основе оксидов металлов. Так в [9, 10] приводятся данные по механоактивационному спеканию композиционной керамики TiC/ Al₂O₃ на основе системы исходных компонентов ТіО₂-АІ-С. Смешивание исходных компонентов в определенном стехиометрическом соотношении с последующим спеканием при температурах выше 1000 °С обеспечивает получение образцов керамики с наноразмерными частицами ТіС, однако, как показано в [9], процесс спекания требует длительного смешивания исходных компонентов (до 50 ч) либо экстремально высоких температур спекания (до 1500 °C) [10]. Это связано с тем, что при температуре 900-1100 °C в составе композиции присутствуют интерметаллиды типа Al₃Ti либо сложные карбиды Ti₃AlC₂. Аналогичные результаты наблюдаются при использовании метода самораспростаняющегося высокотемпературного синтеза [11] либо микроволнового горения [12]. В результате обработки исходной смеси TiO₂-Al-C образуется керамика, содержащая 46-47 масс.% ТіС, при этом продукт на выходе представлен агломератами с частицами карбидов микронных размеров.

Из данных [9–12] следует, что представленные технологические приемы получения наноструктурированного карбидо-корундового порошка требуют высоких энергозатрат не только на изготовление композиционной смеси, но и на последующее ее измельчение. Таким образом, наиболее перспективными методами выступают газофазные технологии получения порошков. В [13] представлены результаты синтеза композиционного наноразмерного порошка TiC-Al₂O₃ на основе системы TiO₂-Al-C исходных веществ. Согласно данным, смешивание протекает в несколько этапов: порошок TiO₂ смешивается с Al в смесителе, после чего смесь подвергается циклическому газофазному осаждению углерода. Далее порошковая смесь термообрабатывается в графитовом тигле в атмосфере аргона (Ar) и оксида углерода (CO). В результате синтезируется композиционный наноструктурированный порошок TiC-Al₂O₃ с размером частиц до 100 нм.

В Объединенном институте машиностроения НАН Беларуси разработан более простой и доступный способ синтеза композиционного наноструктурированного порошка TiC-Al₂O₃ на основе метода газофазного осаждения в восстановительной атмосфере, содержащей летучие формы хлористых соединений [14, 15]. Согласно данным, полученный композиционный порошок сочетает частицы сферической формы с нановолокнами, при этом их диаметр не превышает 100 нм. Отличительной особенностью данного технического приема является то, что получаемый порошок представляет собой химически слабосвязанные соединения, а не механическую смесь веществ, поскольку в процессе синтеза происходит осаждение соединений из газовой фазы на поверхность частиц оксидов. Таким образом, формируется развитая структура, что обуславливает эффективное воздействие модификатора на структуру и свойства силуминов [16-18].

Вместе с тем морфология композиционного модификатора, соотношение оксидной и карбидной фаз и эффективность их синтеза существенно зависят от технологических параметров обработки исходной шихты. При этом наиболее сложной задачей является получение высокого содержания карбидной фазы при наименьших энергетических затратах.

Цель настоящей работы заключается в определении области оптимальных значений технологических параметров синтеза и количества хлорирующего компонента в составе шихты, при которых обеспечивается наибольшая доля q(TiC) в синтезируемом модификаторе. В качестве основных факторов, влияющих на количество TiC, рассматривались: температура изотермической выдержки T (°C), время изотермической выдержки t (с), доля хлорирующего компонента (масс.%).

Материалы и методика исследования. Синтез наномодификатора TiC-Al₂O₃ осуществлялся методом газофазного осаждения из шихты, содержащей микропорошки TiO₂ и Al, а также неочищенные углеродные нанотрубки (рисунок 1). Частицы TiO₂ (см. рисунок 1 *a*) имеют округлую форму с размером частиц до 250 мкм, на поверхности которых находятся более мелкие наноразмерные частицы. Порошок Al марки ПА-1 (см. рисунок 1 *b*) имеет хлопьевидное строение

 Рисунок 1 — СЭМ-изображения (СЭМ — сканирующая электронная микроскопия) шихтовых порошковых материалов:

 $a - \text{TiO}_2; b - \text{Al} (\Pi \text{A-1}); c -$ неочищенных углеродных нанотрубок

 Figure 1 — SEM images (SEM — scanning electron microscopy) of charge powder materials:

 $a - \text{TiO}_2; b - \text{Al} (\Pi \text{A-1}); c -$ crude carbon nanotubes

с размером частиц до 50 мкм. Высокая удельная поверхность микропорошка ПА-1 обеспечивает реакционное взаимодействие с хлоридами восстановительной атмосферы при дальнейшем восстановлении оксида.

Источником углерода был выбран наноструктурированный углеродный материал, содержащий нанотрубки и наноглобулы (см. рисунок 1 с). Анализ морфологии частиц показал, что данные соединения образуют конгломераты диаметром до 30 мкм, которые легко разрушаются при ультразвуковой обработке.

Указанные микропорошки смешивались в заданной пропорции и загружались в цилиндрический контейнер из жаростойкой стали, в котором один торец закрыт, а второй герметизировался после засыпки шихтового материала плавким затвором из оксида бора. Нагрев контейнера проводился в электрической печи Snol 8.2/11 до температуры 750–900 °С, после чего проводилась выдержка в течение 1–3 ч [14].

Внутри контейнера формировалась восстановительная атмосфера из хлоридов, монооксида углерода, паров аммиака и водорода путем добавления в состав шихты неогранических соединений, при разложении которых образуются летучие формы хлористых соединений.

Структурно-фазовое состояние синтезированного нанонаполнителя TiC-Al₂O₃ исследовалось методами рентгеноструктурного анализа и СЭМ. Рентгеноструктурные исследования проводились на автоматизированном комплексе на базе дифрактометра ДРОН-3М в Со-К_а-излучении с прифрактометра ДРОН-3М в Со-К_а-излучении с применением вторичной монохроматизации рентгеновского пучка. СЭМ выполнялась на приборе VEGA II TESCAN (Чехия) с использованием энергодисперсионной приставки типа InCa 350 Cambrigge Instrument GB для элементного анализа.

Результаты эксперимента и их обсуждение. Математическая модель уравнения отклика от независимых переменных с учетом эффектов их взаимодействий и ошибки эксперимента представлена в виде полинома 2-й степени [19]:

$$y = b_0 + \sum_{1 \le i \le k} b_i x_i + \sum_{1 \le i \le l \le k} b_{il} x_i x_l + \sum_{1 \le i \le k} b_{ii} x_{ii}^2$$

где у — параметр оптимизации; k — число факторов; i, l — номера факторов, i \neq l; x_i, x_l — варьируемые факторы; b₀, b_i, b_{ii}, b_{ii} — коэффициенты регрессии, описывающие направление и степень влияния каждого из факторов на параметр оптимизации.

Для получения модели процесса в виде полинома 2-й степени реализован ротатабельный композиционный план 2-го порядка [19]. Для формирования центрального композиционного плана 2-го порядка для трех факторов, к полному факторному эксперименту 2³ добавили шесть «звездных» точек с координатами (+ α ; 0; 0); (- α ; 0; 0); (0; - α ; 0); (0; - α ; 0); (0; 0; + α); (0; 0; - α) и n_0 = 6 точек в центре плана. Таким образом, в плане предусматривалось пять уровней варьирования факторов: + α ; +1; 0; -1; - α (таблица 1). Величину «звездного» плеча α для «ядра», содержащего полный факторный эксперимент, определяли из соотношения:

$$\alpha = 2^{k/4}$$

Таким образом, в реализуемом плане экспериментов число факторов k - 3; ядро плана $- 2^3$; число точек ядра - 8; число «звездных» точек - 6; число нулевых точек $n_0 - 6$; величина звездного плеча $\alpha - 1,682$; общее число опытов N - 20.

Основное влияние на количество синтезируемого TiC оказывает температура изотермической выдержки, время изотермической выдержки и доля неорганических соединений в исходной шихте, при разложении которых образуются летучие формы хлористых соединений. Поэтому для исследования в качестве варьируемых факторов были взяты: T — температура изотермической выдержки, °C; t — время изотермической

Таблица 1 — Матрица планирования Table 1 — Planning matrix

№ опыта	<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₁ <i>x</i> ₂	<i>x</i> ₁ <i>x</i> ₃	<i>x</i> ₂ <i>x</i> ₃	x_{1}^{2}	x_{2}^{2}	x ₃ ²	<i>q</i> , масс.%
1	+	+	+	+	+	+	+	+	+	+	35
2	+		+	+			+	+	+	+	32
3	+	+		+		+		+	+	+	35
4	+			+	+			+	+	+	31
5	+	+	+		+			+	+	+	34
6	+		+			+		+	+	+	31
7	+	+					+	+	+	+	35
8	+				+	+	+	+	+	+	30
9	+	$+\alpha$	0	0	0	0	0	α^2	0	0	36
10	+	-α	0	0	0	0	0	α^2	0	0	29
11	+	0	$+\alpha$	0	0	0	0	0	α^2	0	35
12	+	0	-α	0	0	0	0	0	α^2	0	29
13	+	0	0	$+\alpha$	0	0	0	0	0	α ²	35
14	+	0	0	-α	0	0	0	0	0	α ²	27
15	+	0	0	0	0	0	0	0	0	0	34
16	+	0	0	0	0	0	0	0	0	0	33
17	+	0	0	0	0	0	0	0	0	0	37
18	+	0	0	0	0	0	0	0	0	0	37
19	+	0	0	0	0	0	0	0	0	0	33
20	+	0	0	0	0	0	0	0	0	0	36

выдержки, ч; Q — доля хлористых соединений, масс.%. В качестве параметра оптимизации приняли долю частиц TiC в составе синтезируемого порошка q, масс.%. На основе априорной информации были выбраны уровни и интервалы варьирования факторов (таблица 2).

В соответствии с условиями проведения опытов были синтезированы карбидо-корундовые наноструктурированные порошки и определена в их составе *q*(TiC). Значения *q* указаны в таблице 1 и получены как средние из трех измерений.

По данным опытов, проведенных согласно матрице планирования, получена модель, характеризующая зависимость *q* от исследуемых факторов процесса, которая представляет собой полином 2-й степени:

$$q = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_{12} x_1 x_2 + + b_{13} x_1 x_3 + b_{23} x_2 x_3 + b_{11} x_1^2 + b_{22} x_2^2 + b_{33} x_3^2.$$
(1)

Коэффициенты модели вычисляли по формулам, приведенным в [19]. После чего рассчитыва-

Таблица 2 — Уровни и интервалы варьирования факторов Table 2 — Levels and intervals of factors variation

ли значения коэффициентов уравнения регрессии (с округлением до трех знаков после запятой):

$$b_0 = 34,903;$$

 $b_1 = 1,073; b_2 = 0,804; b_3 = 2,076;$
 $b_{12} = 0,125; b_{13} = -0,125; b_{23} = -0,375;$
 $b_{11} = -0,588; b_{22} = -0,765; b_{33} = -1,120.$

Дисперсию s_y^2 параметра оптимизации определяли по результатам опытов в центре плана (таблица 3).

Дисперсии, характеризующие ошибки в определении коэффициентов уравнения регрессии, вычисляли по формулам, приведенным в [19], при числе факторов k = 3. Получены следующие значения дисперсий:

$$s^{2}{b_{0}} = 0,167s_{y}^{2} = 0,600; s^{2}{b_{i}} = 0,07322s_{y}^{2} = 0,264;$$

 $s^{2}{b_{ij}} = 0,125s_{y}^{2} = 0,450; s^{2}{b_{ij}} = 0,0695s_{y}^{2} = 0,250.$

Для проверки значимости коэффициентов модели находили их доверительные интервалы по следующим выражениям:

	Karapaa afaayayayaya	Уровни факторов					
Факторы (параметры)	кодовое обозначение	+1,682	+1	0	-1	-1,682	
T, °C	x_1	930	900	850	800	770	
<i>t</i> , c	<i>x</i> ₂	2,75	2,5	2	1,5	1,25	
<i>Q</i> , масс.%	<i>x</i> ₃	4,7	4	3	2	1,3	

№ опыта в центре плана	Yu	\overline{y}	$y_u - \overline{y}$	$(y_u - \overline{y})^2$
15	34		-1	1
16	33	25	-2	4
17	37		2	4
18	37	33	2	4
19	33		-2	4
20	36		1	1
$s_{y}^{2} = \frac{\sum_{u=1}^{6} (e^{-1})}{(e^{-1})^{2}}$	$\overline{y_u - \overline{y}}$ 5 - 1)	$s_{E} = \sum_{u=1}^{n_{0}} (y_{u} - \overline{y})^{2} = 18$		

Таблица 3 — Расчет дисперсии s_y^2 Table 3 — Calculation of dispersion s_y^2

$$\Delta b_0 = \pm t_T s \{ b_0 \} = \pm 2,57 \cdot 0,644 = \pm 1,542;$$

$$\Delta b_i = \pm t_T s \{ b_0 \} = \pm 2,57 \cdot 0,283 = \pm 0,677;$$

$$\Delta b_{ij} = \pm t_T s \{ b_0 \} = \pm 2,57 \cdot 0,483 = \pm 1,157;$$

$$\Delta b_{ii} = \pm t_T s \{ b_0 \} = \pm 2,57 \cdot 0,269 = \pm 0,643,$$

где t_T — табличное значение критерия Стьюдента при числе степеней свободы f = 5 и 5-процентном уровне значимости.

Коэффициент значим, если его абсолютная величина больше доверительного интервала. Поскольку коэффициенты b_{12} , b_{13} , b_{23} и b_{11} меньше доверительного интервала, их можно признать статистически незначимыми и исключить из уравнения регрессии. Тогда уравнение регрессии (1) получает вид:

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_{22} x_2^2 + b_{33} x_3^2.$$

Так как среди незначимых оказался коэффициент при квадратичном члене, коэффициенты уравнения были пересчитаны с использованием метода наименьших квадратов. Для пересчета коэффициентов уравнения была составлена система нормальных уравнений:

$$\begin{cases} 20b_0 + b_1 \sum_{j=1}^{20} x_{1j} + b_2 \sum_{j=1}^{20} x_{2j} + b_3 \sum_{j=1}^{20} x_{3j} + \\ + b_{22} \sum_{j=1}^{20} x_{2j}^2 + b_{33} \sum_{j=1}^{20} x_{3j}^2 = \sum_{j=1}^{20} y_j; \\ 20b_0 \sum_{j=1}^{20} x_{1j} + b_1 \sum_{j=1}^{20} x_{1f}^2 + b_2 \sum_{j=1}^{20} x_{1j} x_{2j} + b_3 \sum_{j=1}^{20} x_{1j} x_{3j} + \\ + b_{22} \sum_{j=1}^{20} x_{1j} x_{2j}^2 + b_{33} \sum_{j=1}^{20} x_{1j} x_{3j}^2 = \sum_{j=1}^{20} y_j x_1; \\ 20b_0 \sum_{j=1}^{20} x_{2j} + b_1 \sum_{j=1}^{20} x_{1j} x_{2j} + b_2 \sum_{j=1}^{20} x_{2j}^2 + b_3 \sum_{j=1}^{20} x_{2j} x_{3j} + \\ + b_{22} \sum_{j=1}^{20} x_{2j}^3 + b_3 \sum_{j=1}^{20} x_{2j} x_{3j}^2 = \sum_{j=1}^{20} y_j x_{2j}; \\ 20b_0 \sum_{j=1}^{20} x_{3j}^2 + b_1 \sum_{j=1}^{20} x_{1j} x_{3j} + b_2 \sum_{j=1}^{20} x_{2j} x_{3j} + \\ + b_3 \sum_{j=1}^{20} x_{3j}^2 x_{3j} + b_{12} \sum_{j=1}^{20} x_{2j}^2 x_{3j}^2 + b_{33} \sum_{j=1}^{20} x_{3j}^2 + b_{32} \sum_{j=1}^{20} x_{2j}^2 x_{3j} + \\ + b_{22} \sum_{j=1}^{20} x_{2j}^2 + b_1 \sum_{j=1}^{20} x_{1j} x_{2j}^2 + b_2 \sum_{j=1}^{20} x_{2j}^3 + b_3 \sum_{j=1}^{20} x_{2j}^2 x_{3j}^2 + \\ + b_{22} \sum_{j=1}^{20} x_{2j}^2 + b_1 \sum_{j=1}^{20} x_{1j} x_{2j}^2 + b_2 \sum_{j=1}^{20} x_{2j}^2 x_{3j}^2 + b_3 \sum_{j=1}^{20} x_{2j}^2 x_{3j}^2 + \\ + b_{22} \sum_{j=1}^{20} x_{2j}^2 + b_{13} \sum_{j=1}^{20} x_{2j}^2 x_{3j}^2 + b_{22} \sum_{j=1}^{20} y_j x_{2j}^2; \\ 20b_0 \sum_{j=1}^{20} x_{2j}^2 + b_1 \sum_{j=1}^{20} x_{1j} x_{3j}^2 + b_2 \sum_{j=1}^{20} x_{j}^2 x_{2j}^2 + b_3 \sum_{j=1}^{20} x_{3j}^2 + \\ + b_{22} \sum_{j=1}^{20} x_{2j}^2 x_{3j}^2 + b_{33} \sum_{j=1}^{20} x_{3j}^2 + b_2 \sum_{j=1}^{20} x_{j}^2 x_{2j}^2 + b_3 \sum_{j=1}^{20} x_{3j}^2 + \\ + b_{22} \sum_{j=1}^{20} x_{2j}^2 x_{3j}^2 + b_{33} \sum_{j=1}^{20} x_{3j}^2 + b_2 \sum_{j=1}^{20} y_j x_{3j}^2. \end{cases}$$

После подстановки значений сумм и решения системы нормальных уравнений были определены новые значения коэффициентов: $b_0 = 34,128; b_1 = 1,073; b_2 = 0,804;$ $b_3 = 2,076; b_{22} = -0,635; b_{33} = -0,797.$

В результате использования ротатабельного композиционного планирования 2-го порядка получено следующее уравнение регрессии:

$$y = 34,128 + 1,073x_1 + 0,804x_2 + + 2,076x_2 - 0,635x_2^2 - 0,797x_3^2.$$
 (2)

Адекватность полученной модели проверялась по *F*-критерию Фишера. Для вычисления дисперсии адекватности $s_{a,a}^2$ находили сумму квадратов отклонений s_R расчетных значений \hat{y} от экспериментальных *y* во всех точках плана (таблица 4). Расчетные значения \hat{y} определяли по выражению (2).

Вычислили дисперсию адекватности:

$$s_{aa}^2 = \frac{s_R - s_E}{N - k' - (n_Q - 1)} = \frac{46,096 - 18}{20 - 7 - (6 - 1)} = 3,512,$$

где N — общее количество опытов; k' — количество коэффициентов аппроксимирующего полинома (количество значимых факторов); n_0 — количество опытов в центре плана.

Дисперсия $s_y^2 = 3,6$ (см. таблицу 3), тогда расчетное значение *F*-критерия:

$$F_P = \frac{s_{aa}^2}{s_v^2} = 0,976$$

Таблица 4 — Вспомогательная таблица для вычисления s_R Table 4 — Auxiliary table for calculating s_R

№ опыта	у	ŷ	$y - \hat{y}$	$(y-\hat{y})^2$	
1	35	36,65	-1,65	2,719	
2	32	32,50	-0,50	0,247	
3	35	35,04	-0,04	0,002	
4	31	30,89	0,11	0,012	
5	34	34,50	-0,50	0,253	
6	31	30,35	0,65	0,421	
7	35	32,90	2,11	4,431	
8	30	28,74	1,26	1,580	
9	36	35,93	0,07	0,005	
10	29	32,32	-3,32	11,015	
11	35	33,68	1,32	1,732	
12	29	30,97	-1,97	3,871	
13	35	35,37	-0,37	0,133	
14	27	28,36	-1,36	1,856	
15	34	34,13	-0,13	0,016	
16	33	34,13	-1,13	1,272	
17	37	34,13	2,87	8,248	
18	36	34,13	1,87	3,504	
19	33	34,13	-1,13	1,272	
20	36	34,13	1,87	3,504	
	46,096				

Табличное значение *F*-критерия при 5-процентном уровне значимости и числах степеней свободы для большей дисперсии $k_1 = N - k' - n_0 + 1 = 10$, меньшей дисперсии $k_2 = n_0 - 1 = 5$, $F_T = 4,68$. Так как $F_P < F_T$, полученная модель (2) адекватна при 5-процентном уровне значимости.

Анализ уравнения (2) показывает, что в пределах установленных интервалов варьирования увеличение времени изотермической выдержки и доли хлорирующего компонента в большей степени влияет на зависимость изменения q(TiC)в составе синтезируемого модификатора, чем температура изотермической выдержки.

Для удобства интерпретации полученных результатов и использования уравнения (2) для практических расчетов необходимо перейти от кодированных значений факторов (x_1 , x_2 , x_3) к натуральным значениям (T, t, Q). Для этого использовались следующие формулы пересчета [19]:

$$x_1 = \frac{T - T_0}{\Delta T}; x_2 = \frac{t - t_0}{\Delta t}; x_3 = \frac{Q - Q_0}{\Delta Q},$$

где T_0 , t_0 , Q_0 — натуральные значения факторов на основных уровнях; ΔT , Δt , ΔQ — значения интервалов варьирования уровней (+1; 0; -1).

С учетом перехода к натуральным значениям факторов, уравнение регрессии (2) принимает вид:

$$q = 0,0215T - 3,64t^{2} + 16,168t - -0,797q^{2} + 6,858q - 15,29.$$
 (3)

Уравнение регрессии (3) можно использовать для выбора технологических режимов синтеза карбидо-корундового модификатора силуминов, обеспечивающих в составе максимальное количество TiC. На рисунках 2–4 представлены полученные с помощью уравнения (3) графические зависимости q(TiC) в составе модификатора от исследуемых факторов. При построении поверхности откликов варьировались только два фактора (при построении использовалась программа Origin).

Рисунок 2 — Зависимость q(TiC) от температуры изотермической выдержки T и доли хлорирующего компонента Q(t = 2 y)

Figure 2 — Dependence of q(TiC) on isothermal holding temperature *T* and proportion of chlorinating component Q (t = 2 h)

Рисунок 3 — Зависимость q(TiC) от температуры изотермической выдержки T и времени изотермической выдержки t(Q = 2 масс. %)Figure 3 — Dependence of q(TiC) on isothermal holding temperature T and isothermal holding time t(Q = 2 wt. %)

Рисунок 4 — Зависимость q(TiC) (синтезируемого) от времени изотермической выдержки t и доли хлорирующего компонента Q (T = 850 °C) Figure 4 — Dependence of q(TiC) (synthesized) on sothermal holding time t and proportion of chlorinating component Q (T = 850 °C)

Как видно из рисунков 2-4, с увеличением температуры изотермической выдержки Т q(TiC) в составе композиционного наполнителя увеличивается линейно. С увеличением времени изотермической выдержки t q(TiC) в составе композиционного наполнителя увеличивается до определенного предела, после которого увеличение t приводит к уменьшению количества карбида. Аналогичное влияние оказывает и доля хлорирующего реагента Q, вводимого в состав шихты, при этом следует отметить, что область оптимума достигается в диапазоне 4-4,5 масс.%. Следует отметить, что в представленной математической модели учитывается порционное давление хлоридов в контейнере, возникающее при разложении хлорирующего компонента (NH₄Cl) в процессе синтеза. Так при введении в шихту большого количества добавки увеличивающееся давление нарушает плавкий затвор, в результате чего происходит стравливание восстановительной атмосферы, что снижает интенсивность процесса синтеза TiC. Из рисунка 2 видно, что при температуре изотермической выдержки 900–925 °C доля TiC в составе композиционного нанопорошка наибольшая q(TiC) = 34-37 масс.%, что обеспечивается при доле хлоридного реагента Q = 4-5 масс.%, и времени изотермической выдержки t = 2-2,5 ч, дальнейшее увеличение этих параметров технологического процесса экономически нерационально.

Согласно результатам рентгеноструктурного анализа, после синтеза модификатора по оптимальным технологическим параметрам (T = 900 °C, t = 2 ч, Q = 4 масс.%) основными фазами являются α -Al₂O₃ и TiC с содержанием 59 и 34 масс.% соответственно (рисунок 5 *a*). Наряду с TiC и α -Al₂O₃ в синтезируемом наноструктурированном модификаторе в небольшом количестве

b

Рисунок 5 — Фрагмент дифрактограммы (a) и СЭМ-изображение модификатора TiC-a-Al₂O₃ (b) Figure 5 — Fragment of diffractogram (a) and SEM image of the TIC-a-Al₂O₃ modifier (b)

присутствуют непрореагировавшие соединения TiO_2 (~1 масс.%) и С (~3 масс.%), Ti (~1 масс.%), а также Fe (~2 масс.%), переносимые хлоридами в реакционную зону со стенок контейнера. Частицы TiC и α -Al₂O₃ имеют сферическую форму с размером 50–80 нм, а также форму нановолокон диаметром до 100 нм и длиной до 3 мкм (см. рисунок 5 *b*).

Такая морфология наноструктурированного модификатора обуславливает его эффективное воздействие на расплав силумина.

Выводы. В результате проведенных исследований выполнена оптимизация процесса синтеза наноструктурированного карбидо-корундового модификатора силуминов, проведенная с использованием методов математического планирования эксперимента. Это позволило определить оптимальную область значений технологических режимов синтеза (температура изотермической выдержки T = 900-930 °C, время изотермической выдержки T = 2-2,5 ч, доля хлорирующего компонента Q = 4-4,5 масс.%) для получения модификатора с максимальной долей TiC. Проведенная практическая проверка полученной модели показала ее адекватность в пределах выбранных интервалов варьирования технологических параметров.

Полученный по данным режимам модификатор содержит 34 масс.% TiC, 59 масс.% α -Al₂O₃ и имеет наноструктурированное строение с частицами сферической (диаметром до 80 нм) и нитевидной (диаметром до 100 нм и длиной до 3 мкм) формы.

Список литературы

- Hemanth Kumar, T.R. Taguchi technique for the simultaneous optimization of tribological parameters in metal matrix composite / T.R. Hemanth Kumar, R.P. Swamy, T.K. Chandrashekar // Journal of minerals and Materials characterization and engineering. — 2011. — Vol. 10, no. 12. — Pp. 1179–1188.
- Deshmanya, I.B. Development of Mathematical Model to Predict Micro-Hardness of Al7075/Al₂O₃ Composites Produced by Stir-Casting / I.B. Deshmanya, Gk. Purohit // Journal of Engineering Science and Technology Review. — 2012. — Vol. 5, no. 1. — Pp. 44–50.
- Троцан, А.И. Модифицирование алюминиевого сплава дисперсным порошком Al₂O₃ / А.И. Троцан, В.В. Каверинский, И.Л. Бродецкий, В.А. Воронич // Вестник Приазовского государственного технического университета. Серия: Технические науки. 2013. Вып. 26. С. 116–120.
- Production and characterization of micro and nano Al₂O₃ particle-reinforced LM25 aluminium alloy composites / S.M. Suresh [et al.] // ARPN Journal of Engineering and Applied Sciences. 2011. Vol. 6, no. 6. Pp. 94–98.
- Amarnath, G. Microsrtucture and tribological properties of nanoparticulate WC/Al metal matrix composites / G. Amarnath, K.V. Sharma // International journal of Mechanical Engineering and Technology. — 2013. — Vol. 4. — Pp. 178–188.
- Borodianskiy, K. Mechanical Properties and Microstructure Characterization of Al-Si Cast Alloys Formation Using Carbide Nanoparticles / K. Borodianskiy, M. Zinigrad // Journal of Materials Sciences and Applications. — 2015. — Vol. 1, no. 3. — Pp. 85–90.
- Jiang, D. Fabrication of Al₂O₃/SiC/Al Hybrid Nanocomposites Through Solidification Process for Improved Mechanical Properties / D. Jiang, Y. Jiakang // Metals. — 2018. — 8(8). DOI: https://doi.org/10.3390/met8080572.
- Модифицирование силуминов нанокомпозитными порошками интерметаллид/оксид, получаемые MACBC / А.Ф. Ильющенко [и др.] // Известия НАН Беларуси. Серия физ.-техн. наук. — 2017. — № 1. — С. 18–24.

- Rahimipour, M.R. Synthesis of TiC-Al₂O₃ nanocomposite from impure TiO₂ by mechanical activated sintering / M.R. Rahimipour, M. Razavi, M.S. Yaghmaee // IJE Transaction B: Applications. — 2008. — Vol. 21, no. 3. — Pp. 275–280.
- Chen, J. In-situ Synthesis of Ti₃AlC₂/Tic-Al₂O₃ composite from TiO₂-Al-C system / J. Chen, J. Li, Y. Zhou // J. Mater. Sci. Technol. — 2006. — Vol. 22, no. 4. — Pp. 455–458.
- 11. Lee, J.H. Sintering behavior of Al₂O₃-TiC composite powder prepared by SHS process / J.H. Lee, S.K. Ko, C.W. Won // Materials research bulletin. 2001. Vol. 36. Pp. 989–996.
- Kitiwan, M. Effect of reactant characteristics on the synthesis and properties of microwave combustion synthesis of Al₂O₃-TiC powder / M. Kitiwan, D. Atong // Proceeding of the Third Thailand Materials science and technology conference, Thailand, 2004.
- Kaga, H. Formation of Al₂O₃ TiC composite nano-particles Synthesized from carbon-coated precursors / H. Kaga, R. Koc / Progress in nanotechnology: processing / John Wiley and Sons, 2010. — Pp. 97–101.
- Композиционный порошок TiC-Al₂O₃ и способ его получения: пат. ВУ 22136 / А.И. Комаров, В.И. Комарова, Д.В. Орда. — Опубл. 27.06.2016.
- 15. Комаров, А.И. Синтез карбидо-корундового наполнителя и его воздействие на структуру и свойства поршнево-

го сплава АК12М2МгН / А.И. Комаров, В.И. Комарова, Д.В. Орда // Механика машин, механизмов и материалов. — 2016. — № 1(34). — С. 81–86.

- Комаров, А.Й. Синтез наноструктурированных тугоплавких наполнителей, их влияние на структуру и свойства силуминов / А.И. Комаров // Перспективные материалы и технологии: в 2 т. / под ред. В.В. Клубовича. — Витебск: ВГТУ, 2015. — Т. 2, гл. 12. — С. 202–223.
- Воздействие синтезируемой нанокомпозиции SiC-Al₂O₃ на структурообразование и триботехнические свойства композита на основе поршневого сплава AK12M2MгH / A.И. Комаров [и др.] // Механика машин, механизмов и материалов. — 2017. — № 1(38). — С. 71–78.
- Структура и свойства сплава АК7, модифицированного композиционной карбидо-корундовой нанодобавкой / А.И. Комаров [и др.] // Актуальные вопросы машиноведения: сб. науч. тр. / Объедин. ин-т машиностроения НАН Беларуси; редкол.: С.Н. Поддубко [и др.]. — Минск, 2017. — Вып. 6. — С. 363–365.
- Спиридонов, А.А. Планирование эксперимента при исследовании технологических процессов / А.А. Спиридонов. — М.: Машиностроение, 1981. — 184 с.

ORDA Dmitry V.

Researcher

E-mail: dmitry orda@mail.ru

Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus

Received 28 January 2021.

OPTIMIZATION OF SYNTHESIS PROCESS OF NANOSTRUCTURED CARBIDE-CORUNDUM SILUMIN MODIFIER

A mathematical model is developed for the process of synthesis of nanostructured modifier TiC-Al₂O₃ by gasphase deposition based on the system of starting materials TiO₂-Al-C. To construct the response equation in the form of a polynomial of the second degree, the experiments were carried out in accordance with the model of a rotatable composite plan of the second order with three factors, including 20 experiments. The main factors considered were the isothermal holding temperature T (°C), the isothermal holding time t (s), and the proportion of the chlorinating component Q (wt.%), and as a response function the proportion of titanium carbide q(TiC) (wt.%) in the composition of the synthesized modifier. The paper describes the results of computational and experimental modeling, from which it can be concluded that to obtain a modifier with the highest content of titanium carbide, the synthesis parameters should be as follows: T = 900–930 °C; t = 2–2.5 h; Q = 4–4.5 wt.%. The resulting TiC-Al₂O₃ modifier contains 34 wt.% TiC and has a nanostructured structure, with spherical and filamentous particles which diameter does not exceed 100 nm.

Keywords: modifier, nanoparticles, titanium carbide, corundum, optimization, mathematical model

DOI: https://doi.org/10.46864/1995-0470-2020-1-54-71-79

References

- Hemanth Kumar T.R., Swamy R.P., Chandrashekar T.K. Taguchi technique for the simultaneous optimization of tribological parameters in metal matrix composite. *Journal of minerals and materials characterization and engineering*, 2011, vol. 10, no. 12, pp. 1179–1188.
- Deshmanya I.B., Purohit Gk. Development of mathematical model to predict micro-hardness of Al7075/Al₂O₃ composites produced by stir-casting. *Journal of engineering science and technology review*, 2012, vol. 5, no. 1, pp. 44–50.
- technology review, 2012, vol. 5, no. 1, pp. 44–50.
 Trotsan A.I., Kaverinskiy V.V., Brodetskiy I.L., Voronich V.A. Modifitsirovanie alyuminievogo splava dispersnym poroshkom Al₂O₃ [Modification of an aluminium alloy by disperse powder

Al₂O₃]. Reporter of the Priazovskyi State Technical University. Section: Technical sciences, 2013, iss. 26, pp. 116–120 (in Russ.).

- Suresh S.M., Mishra D., Srinivasan A., Arunachalam R.M., Sasikumar R. Production and characterization of micro and nano Al₂O₃ particle-reinforced LM25 aluminium alloy composites. *ARPN Journal of engineering and applied sciences*, 2011, vol. 6, no. 6, pp. 94–98.
- Amarnath G., Sharma K.V. Microsrtucture and tribological properties of nanoparticulate WC/Al metal matrix composites. *International journal of mechanical engineering and technology*, 2013, vol. 4, pp. 178–188.

- Borodianskiy K., Zinigrad M. Mechanical properties and microstructure characterization of Al-Si cast alloys formation using carbide nanoparticles. *Journal of materials sciences and applications*, 2015, vol. 1, no. 3, pp. 85–90.
- Jiang D., Jiakang Y. Fabrication of Al₂O₃/SiC/Al hybrid nanocomposites through solidification process for improved mechanical properties. *Metals*, 2018, vol. 8(8). DOI: https:// doi.org/10.3390/met8080572.
- Ilyushchenko A.Ph., Andrushevich A.A., Dyachkova L.N., Kalinichenko V.A., Lecko A.I. Modifitsirovanie siluminov nanokompozitnymi poroshkami intermetallid/oksid, poluchaemye MASVS [Modification of silumins by nanocomposite intermetallic/oxide powders produced by MASHS]. *Proceedings* of the National Academy of Sciences of Belarus. Physical-technical series, 2017, no. 1, pp. 18–24 (in Russ.).
- Rahimipour M.R., Razavi M., Yaghmaee M.S. Synthesis of TiC-Al₂O₃ nanocomposite from impure TiO₂ by mechanical activated sintering. *IJE Transaction B: Applications*, 2008, vol. 21, no. 3, pp. 275–280.
- Chen J., Li J., Zhou Y. In-situ Synthesis of Ti₃AlC₂/Tic-Al₂O₃ composite from TiO2-Al-C system. *Journal of materials science & technology*, 2006, vol. 22, no. 4, pp. 455–458.
- Lee J.H., Ko S.K., Won C.W. Sintering behavior of Al₂O₃-TiC composite powder prepared by SHS process. *Materials research bulletin*, 2001, vol. 36, pp. 989–996.
- Kitiwan M., Atong D. Effect of reactant characteristics on the synthesis and properties of microwave combustion synthesis of Al₂O₃-TiC powder. *Proc. 3rd Thailand materials science and technology conference*. Bangkok, 2004.
- Kaga H., Koc R. Formation of Al₂O₃ TiC composite nano-particles synthesized from carbon-coated precursors. *Progress in nanotechnology: processing*, 2010, pp. 97–101.
- Komarov A.I., Komarova V.I., Orda D.V. Kompozitsionnyy poroshok TiC-Al₂O₃ i sposob ego polucheniya [Composite powder

 $TiC\text{-}Al_2O_3$ and its production method]. Patent RB, no. 22136, 2016 (in Russ.).

- Komarov A.I., Komarova V.I., Orda D.V. Sintez karbidokorundovogo napolnitelya i ego vozdeystvie na strukturu i svoystva porshnevogo splava AK12M2MgN [Synthesis of carbide-corund filler and its impact on the structure and properties of piston GK-AlSi12(Cu) alloys]. *Mechanics of machines, mechanisms and materials*, 2016, no. 1(34), pp. 81–86 (in Russ.).
- Komarov A.I. Sintez nanostrukturirovannykh tugoplavkikh napolniteley, ikh vliyanie na strukturu i svoystva siluminov [Synthesis of nanostructured refractory fillers, their influence on the structure and properties of silumins]. *Perspektivnye materialy i tekhnologii*, 2015, vol. 2, ch. 12, pp. 202–223 (in Russ.).
- rialy i tekhnologii, 2015, vol. 2, ch. 12, pp. 202–223 (in Russ.).
 17. Komarov A.I., Komarova V.I., Shipko A.A., Orda D.V. Vozdeystvie sinteziruemoy nanokompozitsii SiC-Al₂O₃ na strukturoobrazovanie i tribotekhnicheskie svoystva kompozita na osnove porshnevogo splava AK12M2MgN [Impact of synthesized SiC-Al₂O₃ nanocomposite on the structure and tribomechanical properties of AK12M2MgN piston alloy]. *Mechanics of machines, mechanisms and materials*, 2017, no. 1(38), pp. 71–78 (in Russ.).
- Komarov A.I., Komarova V.I., Orda D.V., Iskandarova D.O. Struktura i svoystva splava AK7, modifitsirovannogo kompozitsionnoy karbido-korundovoy nanodobavkoy [Structure and properties of AK7 alloy, modified by composite carbide-corundum nano-additive]. *Aktualnye voprosy mashinovedeniya*, 2017, iss. 6, pp. 363–365 (in Russ.).
- Spiridonov A.A. *Planirovanie eksperimenta pri issledovanii tekhnologicheskikh protsessov* [Planning of an experiment in the study of technological processes]. Moscow, Mashinostroenie Publ., 1981. 184 p. (in Russ.).