

УДК 621.83.06

E.C. ЛУСТЕНКОВА старший преподаватель кафедры «Основы проектирования машин» E-mail: fittsova@gmail.com Белорусско-Российский университет, г. Могилев, Республика Беларусь

Поступила в редакцию 05.02.2021.

МЕТОДИКА РАСЧЕТА И ПРОЕКТИРОВАНИЯ СФЕРИЧЕСКИХ РОЛИКОВЫХ ПЕРЕДАЧ С ДВУХРЯДНЫМ САТЕЛЛИТОМ

В статье приведена методика расчета и проектирования сферических роликовых передач с двухрядным сателлитом. Исследуемые передачи являются аналогами планетарных зубчатых передач с двухвенцовым сателлитом и позволяют реализовывать широкий диапазон передаточных отношений. К преимуществам сферических роликовых передач относят малые габариты, низкую материалоемкость, компоновочные свойства. Особенностью предложенного алгоритма расчета является поиск оптимальных геометрических параметров передачи по критерию максимального КПД с учетом максимальной нагрузочной способности при заданных максимальных радиальных габаритах. Основным критерием прочности является усталостная выносливость. Методика включает проектировочные и проверочные расчеты и позволяет разрабатывать малогабаритные редукторные механизмы для низкооборотных приводов различного назначения.

Ключевые слова: сферическая роликовая передача, сферический механизм, кинематическая схема, силовой анализ, прочностной расчет, методика расчета и проектирования

DOI: https://doi.org/10.46864/1995-0470-2021-2-55-18-24

Введение. Низкооборотные силовые приводы с высокоскоростными двигателями и медленно вращающимися приводными валами применяются во многих областях: в системах слежения и позиционирования, в кинематических цепях роботов и манипуляторов, в аэрокосмической индустрии, широко распространены в различных приводах приборов, бытовой техники. При установленных ограничениях на габариты привода для получения больших значений передаточных отношений используют особые типы механических передач: червячные, волновые. Часто применяются планетарные зубчатые передачи, в т. ч. с циклоидально-цевочным зацеплением, которые обеспечивают передаточное отношение до 16 с высоким КПД и надежностью. Планетарные передачи с одновенцовым сателлитом позволяют получить передаточные отношения до 50...60 в одной ступени, однако их надежность и КПД зависят от механизма передачи вращения с сателлита на ведомый

вал [1]. Планетарные передачи с двухвенцовым сателлитом позволяют в несколько раз увеличить диапазон передаточных отношений, недостатками являются повышенное скольжение и низкий КПД [2]. Замена зубьев телами качения позволяет снизить потери мощности [3], однако в конструкциях с незакрепленными осями (центрами масс) тел качения на одном из элементов передачи наблюдаются повышенный шум и интенсивный износ. Передачи, в которых сателлит совершает не плоское движение, а регулярную прецессию, относят к нутационным или прецессионным передачам. Они более уравновешены, имеют низкий приведенный осевой момент инерции, меньшие радиальные габариты [4-7]. Сателлит совершает сферическое движение, поэтому передачи можно отнести к сферическим механизмам. Для увеличения числа роликов, одновременно передающих нагрузку, разработаны конструкции сферических роликовых передач (СРП), где ряды роликов расположены коаксиально, их оси закреплены на сателлите, совершающем регулярную прецессию [8]. К настоящему времени разработаны и созданы экспериментальные образцы редукторов для приводов средств механизации, линейных перемещений, грузоподъемных механизмов [9]. Для более широкого применения СРП необходимо теоретическое обоснование и оптимизация параметров передачи. В работах [10, 11] изложены алгоритмы прочностного анализа СРП по различным критериям прочностной надежности, получены результаты оптимизации некоторых геометрических параметров по критерию максимального КПД [12]. Актуальной является задача создания комплексной инженерной методики проектирования СРП с возможностью последующей автоматизации расчетов.

Конструкция и принцип работы сферической роликовой передачи с двухрядным сателлитом. Передача (рисунок 1) содержит ведущий вал 1, имеющий наклоненный участок (кривошип) 6. Этот наклон может обеспечиваться установкой эксцентриковой втулки на ведущий вал. На кривошипе с помощью подшипников качения размещается составной сателлит 5. Сателлит содержит наружную и внутреннюю поверхности с отверстиями, рассверленными с постоянным шагом. В эти отверстия установлены два ряда роликов 4' и 4" соответственно, оси которых лежат в одной плоскости. Наружный ряд роликов 4' контактирует своими поверхностями сферической формы с замкнутой беговой дорожкой 3. Эта беговая дорожка образована двумя остановленными сферическими кулачками, закрепленными в корпусе 8. Внутренний ряд роликов 4" контактирует своими сферическими поверхностями с беговой дорожкой 2 ведомого сферического кулачка, соединенного с ведомым валом 7 СРП. Центр масс сателлита совпадает с центром сферического движения О и расположен на оси передачи.

При передаче нагрузки ролики могут вращаться в отверстиях сателлита. Этим обеспечивается

Рисунок 1 — Кинематическая схема сферической роликовой передачи с двухрядным сателлитом Figure 1 — Kinematic scheme of spherical roller transmission with double-row satellite

снижение потерь мощности, потому что трение скольжения частично заменяется трением качения. Передаточное отношение определяется как у планетарных передач с двухвенцовым сателлитом с двумя внутренними зацеплениями, но при этом функции чисел зубьев венцов сателлита выполняют ролики, а функции чисел зубьев корончатого и солнечного центральных колес — числа периодов беговых дорожек остановленных и ведомого кулачков соответственно. С учетом того, что число роликов в ряду на единицу больше числа периодов контактирующей с ними беговой дорожки, передаточное отношение і СРП может быть выражено через числа периодов неподвижной Z₃ и подвижной Z₂ беговых дорожек 3 и 2 соответственно:

$$i_{12}^{(3)} = \frac{(Z_3 + 1) \cdot Z_2}{Z_2 - Z_3}.$$
 (1)

Разработанные передачи обеспечивают широкий диапазон передаточных отношений (16...200). В СРП нагрузочная способность повышается, благодаря увеличению многопарности зацепления, отсутствуют детали из дорогостоящих материалов, в отличие от червячных передач. Передачи обладают компоновочными преимуществами: ведущий и ведомый валы соосны, корпуса имеют цилиндрическую форму. Это повышает удобство встраивания их в кинематические цепи машин и позволяет использовать модульный принцип при разработке приводных систем.

Определение допускаемых напряжений, чисел периодов беговых дорожек и роликов. В качестве исходных данных для расчета принимаются: постоянный (номинальный) вращающий момент на ведомом валу T_2 ; частота вращения ведущего вала n_1 ; максимальный диаметр корпуса редуктора D_k , обусловленный компоновочными требованиями; передаточное отношение *i* (или частоты вращения валов); материалы для изготовления деталей редуктора; виды их термообработки и степень точности изготовления; вид применяемого смазочного материала; условия эксплуатации.

По справочной литературе определяют допускаемые контактные напряжения $[\sigma_{H}]_{2}$ и $[\sigma_{H}]_{3}$ для материалов ведомого и остановленных кулачков соответственно и роликов $[\sigma_H]_4$, допускаемые напряжения среза [т_s]₄ для материала роликов, допускаемые напряжения смятия для материалов сателлита $[\sigma_{cm}]_5$ и роликов $[\sigma_{cm}]_4$. Дополнительно определяют напряжения кручения для валов передачи [т]. В качестве допускаемых контактных напряжений $[\sigma_{H}]$ и напряжений смятия $[\sigma_{cm}]$ для передачи принимаются минимальные значения, т. е. расчет проводится по наиболее слабому элементу. С учетом исходных данных принимается значение приведенного коэффициента трения f в парах, образуемых роликами, и угол трения, вычисляемый по формуле $\psi = \operatorname{arctg}(f)$.

Первоначально определяют конструктивную схему передачи ($R_3 > R_2$ или $R_2 > R_3$). Как правило, схема с $R_2 > R_3$ используется при вращающемся корпусе, выполняющем функцию ведомого вала (например, привод лебедки). Схема с $R_3 > R_2$ конструктивно удобна, т. к. основная сфера R_3 связана с корпусом, поэтому далее рассматриваем эту схему. Также принимают схему силового взаимодействия (силовую схему), которая будет реализована: первую ($Z_2 > Z_3$) либо вторую ($Z_2 < Z_3$). Выбор схемы зависит от многих факторов: конструктивной схемы, компоновки, направления вращения ведомого вала, максимального диаметра корпуса редуктора. При прочих равных условиях предпочтительна первая силовая схема. Предварительно прорабатывается конструкция СРП и устанавливается вид геометрического замыкания высших кинематических пар, образуемых телами качения обоих рядов.

В зависимости от заданного передаточного отношения $i_{12}^{(3)}$ с учетом формулы (1) определяют числа периодов Z_2 и Z_3 , числа роликов n_{s2} и n_{s3} во внутреннем и наружном рядах соответственно. Принимают абсолютную разницу чисел периодов поверхностей ведомого и остановленных кулачков $\Delta Z_s = |Z_2 - Z_3|$ по таблице. Большие значения ΔZ_s позволяют увеличить КПД СРП, однако приводят к увеличению чисел периодов кулачковых профилей. При заданных радиальных габаритах передачи это приводит к уменьшению рабочих участков беговых дорожек, снижает нагрузочную способность и не позволяет реализовать большие значения.

Числа периодов определяют по формулам: - для первой силовой схемы, в которой $Z_2 > Z_3$:

$$Z_{2} = \left[0, 5 \cdot \left(\sqrt{\left(1 - \Delta Z_{s}\right)^{2} + 4 \cdot \left|i_{12}^{(3)}\right| \cdot \Delta Z_{s}} + \Delta Z_{s} - 1\right)\right]; (2)$$
$$Z_{3} = Z_{2} - \Delta Z_{s}; (3)$$

- для второй силовой схемы, в которой $Z_2 < Z_3$:

$$Z_{2} = \left[0.5 \cdot \left(\sqrt{\left(1 + \Delta Z_{s}\right)^{2} + 4 \cdot \left| i_{12}^{(3)} \right| \cdot \Delta Z_{s}} - \Delta Z_{s} - 1 \right) \right]; (4)$$
$$Z_{3} = Z_{2} + \Delta Z_{s}.$$
(5)

Формулы (2) и (4) получены из выражения (1) заменой Z_3 на $|Z_3 + \Delta Z_s|$ в зависимости от силовой схемы. Числа роликов в наружном и внутреннем рядах соответственно: $n_{s3} = 1 + Z_3$; $n_{s2} = 1 + Z_2$.

Проектировочный расчет СРП и теоретическая оценка ее КПД. По графикам на рисунке 2 при определенном числе периодов Z_2 , принятом параметре ΔZ_3 , приведенном коэффициенте

Таблица — Рекомендуемые значения разницы чисел периодов беговых дорожек

Table — Recommended values for the difference in the number of racetrack periods

Передаточное отношение	1650	51100	101150	>150200
ΔZ_s	24	23	12	1

трения f находят оптимальное значение угла Θ . Из графиков видно, что изменение приведенного коэффициента трения (его трехкратное увеличение) не оказывает существенного влияния на оптимальные значения угла Θ . На рисунке 2 также указаны рекомендованные диапазоны чисел периодов Z_2 для реализации требуемых передаточных отношений (16...200), в скобках указаны данные для второй силовой схемы.

Радиусы основных сферических поверхностей R_3 и R_2 (см. рисунок 1) определяют по эмпирическим зависимостям с округлением до целого числа $R_3 \approx (0,35...0,39) \cdot D_k$, $R_2 \approx (0,52...0,68) \cdot R_3$. Предварительное значение радиуса сферического участка ролика r_s (радиус сферической фрезы для изготовления кулачковых профилей (рисунок 3)) определяют согласно эмпирической зависимости $r_s \approx (0,09...0,19) \cdot R_3$. Данный радиус, как правило, принимается для роликов и кулачков обеих ступеней $r_{s2} = r_{s3} = r_s$. Рассчитывают диаметр и длину стержней роликов (см. рисунок 3) по формулам: $d_{so} = 2 \cdot r_s - 2$, мм (максимальное рекомендуемое значение), $l_{so} = r_s$ (минимальное рекомендуемое значение).

Определяют средние значения углов подъема центровых кривых α_{m2} и α_{m3} , а также средний угол подъема условных однопериодных ($Z_1 = 1$) центровых кривых — окружностей, вдоль которых расположены центры масс роликов α_{m1} (j = 1).

$$\boldsymbol{\alpha}_{mj} = \operatorname{arctg} \left(2 \cdot \boldsymbol{\Theta} \cdot \boldsymbol{Z}_{j} \cdot \boldsymbol{\pi}^{-1} \right), \tag{6}$$

где j — индекс, обозначающий принадлежность параметра беговым дорожкам, j = 1, 2, 3.

Углы α_{*m*2} для СРП выполняют функцию углов подъема винтовой линии для червячных передач. От их значений зависят КПД передачи и скорости скольжения.

Рисунок 2 — Оптимальное значение угла Ө в зависимости от чисел периодов беговых дорожек Figure 2 — Optimum value of angle O depending on the racetracks number of periods

Рисунок 3 — Геометрические параметры роликов и контактирующих с ними деталей: 1 — сателлит; 2, 3 — остановленные кулачки; 4 — ролик; 5 — корпус Figure 3 — Geometric parameters of the rollers and the parts in contact with them: 1 — pinion; 2, 3 — stopped cams; 4 — roller; 5 — housing

Проверяют выполнение условия соседства (возможности размещения роликов в рядах сателлита) по формуле:

$$n_{sj} \cdot \arcsin\left(0, 5 \cdot d_{so} \cdot \left(R_{j} - l_{so}\right)^{-1}\right) < \pi.$$
 (7)

Условие (7) должно выполняться для двух рядов тел качения (j = 2 и j = 3). Рекомендовано также выполнение условия равнопрочности сателлита. Оно аналогично выражению (7), однако при этом в правой части не π , а 0,5 π . При его выполнении толщина перемычек между отверстиями будет равна или больше диаметра отверстий под ролики. Если данное условие не будет выполняться, необходима дополнительная проверка прочности сателлита.

Средний КПД роликового зацепления η_m для первой и второй силовых схем соответственно:

$$\eta_{tm1} = \frac{\sin(\alpha_{m3} - \psi) \cdot \sin(\alpha_{m2} + \psi) \cdot (tg(\alpha_{m1}) + tg(\alpha_{m3}))}{\left|i_{12}^{(3)}\right| \cdot \sin(\alpha_{m2} - \alpha_{m3} + 2 \cdot \psi) \cdot tg(\alpha_{m1}) \cdot tg(\alpha_{m3})}; (8)$$

$$\eta_{tm2} = \frac{\sin(\alpha_{m3} + \psi) \cdot \sin(\alpha_{m2} - \psi) \cdot (tg(\alpha_{m1}) + tg(\alpha_{m3}))}{\left|i_{12}^{(3)}\right| \cdot \sin(\alpha_{m3} - \alpha_{m2} + 2 \cdot \psi) \cdot tg(\alpha_{m1}) \cdot tg(\alpha_{m3})}. (9)$$

Формулы (8) и (9) были получены на основе математической модели, описывающей контакт ролика с основными элементами СРП [12]. Эти формулы использовались в качестве целевых функций для оптимизации значений угла Θ , выраженного через углы подъема центровых кривых, и для построения графиков на рисунке 2.

Силовой анализ СРП и проверочные прочностные расчеты. Вычисляют коэффициент, с помощью которого осуществляется преобразование геометрических параметров сферических передач в эквивалентные параметры цилиндрических передач с промежуточными телами качения:

$$K_{Nsf} = 2 \cdot \left(1 + \cos\left(\Theta\right)\right)^{-1}.$$
 (10)

Определяют эмпирический коэффициент $K_n \leq 1$, учитывающий неравномерность распределения нагрузки по параллельным потокам мощности (телам качения), по формуле

$$K_n = 1, 6 - 0, 1 \cdot n_{st} \le 1$$

где *n*_{st} — степень точности изготовления деталей.

Среднее значение отношения количества роликов, передающих нагрузку, к общему их числу K_n в каждом из рядов передачи:

$$K_{pj} = \left(1 - 0,707 \cdot r_s \cdot \mathrm{tg}\left(\alpha_{mj}\right) \cdot \left(R_j \cdot \Theta\right)\right) \cdot Z_{sj}, \ (11)$$

где $0,707 = \cos(\pi/4)$ — коэффициент, учитывающий уменьшение значения радиуса ролика до r'_s , где приложены нормальные усилия; Z_{sj} — коэффициент, учитывающий тип геометрического замыкания высших кинематических пар ($Z_{sj} = 1$, если замыкание двухстороннее и беговую дорожку образовывают два кулачка; $Z_{sj} = 0,5$, если замыкание одностороннее и ролики взаимодействуют с кулачковым профилем одного кулачка).

Средние значения нормальных реакций, возникающих в контакте роликов и кулачков для первой (N_{m21}, N_{m31}) и второй (N_{m22}, N_{m32}) силовых схем:

$$N_{m^{21}(2)} = \frac{1,414 \cdot T_2 \cdot K_{nsf} \cdot \cos(\psi)}{K_n \cdot K_{p2} \cdot (R_2 + 0,707 \cdot r_s) \cdot n_{s2} \cdot \sin(\alpha_{m2} \pm \psi)}; (12)$$

$$N_{m^{31(2)}} = \frac{1,414 \cdot T_2 \cdot K_{nsf} \cdot \cos(\psi)}{K_n \cdot K_{p3} \cdot (R_3 + 0,707 \cdot r_s) \cdot n_{s3} \cdot \sin(\alpha_{m3} \mp \psi)}, (13)$$

где верхний знак в знаменателях для первой, а нижний — для второй силовых схем.

Из двух сил вычисляют максимальное значение нормальной силы $N_{\text{max}} = \max(N_{m2}, N_{m3})$ для последующих прочностных расчетов.

Условие контактной выносливости СРП получено на основе преобразования выражения для определения максимальных напряжений σ_H в контакте шара и желоба [12]:

$$\sigma_{H} = K_{Gs} \cdot \xi_{q} \cdot \sqrt[3]{N_{\max} \cdot \Sigma \rho^{2}} \le [\sigma_{H}], \qquad (14)$$

где [σ_H] — допускаемые контактные напряжения, МПа; N_{max} — максимальная величина нормальной реакции ролика и беговой дорожки, H; ξ_q — коэффициент, зависящий от геометрии контактирующих тел; $\Sigma \rho$ — сумма главных кривизн взаимодействующих тел, мм⁻¹; K_{Gs} — коэффициент, зависящий от свойств материалов контактирующих деталей. Для стальных деталей K_{Gs} = 863,6 МПа^{2/3}.

Сумму главных кривизн вычисляют следующим образом:

$$\Sigma \rho = \frac{2}{r_s} - \frac{1}{r_s + \Delta r_s} - \frac{1}{R + r_s},\tag{15}$$

где Δr_s — разность радиусов сферической поверхности ролика и поперечного профиля беговой дорожки.

В формуле (15) и далее в качестве R принимают R_2 или R_3 , соответствующие N_{max} .

Положительную разницу между радиусом профиля беговой дорожки и радиусом тела качения Δr_s можно принимать равной максимальному отклонению поля допуска в системе отверстия *H* на размер r_s по квалитету, соответствующему степени точности n_{st} . Отношение, учитывающее разность кривизны контактирующих поверхностей:

$$\Omega = \left(\frac{1}{r_s + \Delta r_s} - \frac{1}{R + r_s}\right) \cdot \Sigma \rho^{-1}.$$
 (16)

Для определения коэффициента ξ_q , зависящего от отношения Ω , была получена зависимость, аппроксимирующая табличные данные [13], позволяющая автоматизировать расчеты:

$$\xi_q = 1,017 - 0,826 \cdot \Omega + 11,254 \cdot \Omega^2 - - 67,467 \cdot \Omega^3 + 197,583 \cdot \Omega^4 - (17) - 304,129 \cdot \Omega^5 + 235,207 \cdot \Omega^6 - 72,224 \cdot \Omega^7.$$

Минимальный радиус сферической поверхности ролика, исходя из контактной прочности:

$$r_{s\min} = 0,5 \cdot \left(\sqrt{R^2 + 28620 \cdot R \cdot N_{\max}^{\frac{1}{2}} \cdot \left[\sigma_H\right]^{-\frac{3}{2}}} - R \right). (18)$$

Проверяют выполнение условия $r_s \ge r_{s \min}$. Если оно выполняется и разница между двумя этими значениями существенна, то может быть принято решение об изменении значения r_s в меньшую сторону. При этом необходим перерасчет параметров, определенных при проектировочном расчете по приведенной методике. Если указанное условие не выполняется, при этом $r_s < r_{s \min}$, можно принять $r_s = r_{s \min}$ и осуществить перерасчет параметров, полученных при проектировочном расчете. Однако вместе с тем нужно следить за выполнением условия $K_{pj} \ge 0,16...0,4$ (меньшее значение принимается для одностороннего геометрического замыкания высших кинематических пар, образуемых роликами).

Если данное условие не выполняется, необходимо скорректировать:

радиусы основных сфер *R_j* в сторону их увеличения;
 материалы и термообработку для увеличения допускаемых контактных напряжений;

- исходные данные, установив другое значение передаваемого момента.

Максимальный (предельный) передаваемый момент с принятыми значениями геометрических параметров, в том числе *r*_.:

$$T_{2\max} = 1,098 \cdot 10^{-12} \times \frac{\left[\sigma_{H}\right]^{3} \cdot K_{n} \cdot K_{p2} \cdot \left(R_{2} + 0,707 \cdot r_{s}\right) \cdot n_{s2} \cdot \sin\left(\alpha_{m2} \pm \psi\right)}{\xi_{q}^{3} \cdot \Sigma \rho^{2} \cdot K_{nsf} \cdot \cos\left(\psi\right)}.$$
⁽¹⁹⁾

Верхний знак в формуле (19) принимается для первой силовой схемы, нижний — для второй. Коэффициент в выражении согласует размерности входящих в него величин. Если требования к приводу не позволяют корректировать значение передаваемого момента, необходимо использовать только первые две рекомендации из трех либо рассмотреть возможность использования многоступенчатых конструкций с последовательным соединением ступеней.

При заданном моменте T_2 на ведомом валу моменты на ведущем валу T_1 и на корпусе T_3 можно определить, преобразовав уравнение баланса мощностей и использовав уравнение равновесия моментов: $T_1 = T_2 / (i \cdot \eta_m), T_3 = T_2 - T_1$. После установления r_s проверяют контактную прочность по формуле (14). В качестве дополнительных проверочных расчетов производится вычисление напряжений смятия в контакте стержня ролика и внутренней поверхности отверстий сателлита, а также напряжения среза по формулам для расчета деталей машин [14]. Для передач с высокими скоростями вращения ведущего вала (более 1500 мин⁻¹) может проводиться проверка износостойкости контактирующих поверхностей беговых дорожек и роликов.

Расчеты по приведенному выше алгоритму были автоматизированы в системе Mathcad. Была рассчитана и спроектирована СРП с передаточным отношением 16 для привода усилителя момента (рисунок 4).

СРП была спроектирована по первой силовой схеме и конструктивной схеме, где $R_3 > R_2$. Число роликов $n_{s3} = 6$, $n_{s2} = 9$, число периодов беговых дорожек $Z_3 = 5, Z_2 = 8$. Ведомый вал передачи нагружался моментом $T_2 = 14 \text{ H} \cdot \text{м}$. Материал кулачков сталь 12ХНЗА, термообработка — цементация до твердости 58...62 HRC; материал роликов — сталь 18ХГТ, термообработка — цементация, закалка до твердости 60...62 HRC. Материал сателлита и валов — сталь 45 с улучшением до твердости поверхности 220...240 НВ. Смазка — Литол 24. Степень точности изготовления основных деталей передачи — 7-я. Приведенный коэффициент трения, учитывающий трение скольжение и сопротивление качению, принимался равным f = 0.02 согласно экспериментально полученным данным [9].

Рассчитанные геометрические параметры СРП: $R_2 = 19$ мм, $R_3 = 35$ мм, $\Theta = 0,257$ рад, $r_s = 5$ мм, $r_{so} = 0.5 \cdot d_{so} = 4$ мм. Результаты теоретических расчетов следующие. Максимальные контактные напряжения $\sigma_{Hmax} = 1155,4$ МПа, напряжения смятия $\sigma_{_{CM}}$ = 19,6 МПа, напряжения среза $\tau_{_{S4}}$ = 15,6 МПа. Допускаемые напряжения смятия $[\sigma_{cm}] = 80$ МПа определялись для материала сателлита (наименее прочного) как для подвижных шпоночных соединений, выполненных по переходной посадке, напряжения среза [τ_{s4}] = 140 МПа — как для болтов, поставленных без зазора при переменной нагрузке [14]. Допускаемые значения контактных напряжений $[\sigma_{H}] = 1150$ МПа (допустима перегрузка менее 5 %) определялись по стандартной методике для зубатых передач с учетом коэффициента долговечности Z_N = 1, что предполагает эквивалентное число циклов нагружений не менее 107. Проведенные испытания усилителя момента подтвердили работоспособность СРП при

Рисунок 4 — Редуктор для усилителя момента с СРП (а — конструктивная схема; b — общий вид): 1 — ведущий вал;
2 — эксцентрик; 3 — составной сателлит; 4 — первый ряд роликов; 5 — беговая дорожка, образованная остановленными кулачками;
6, 7 — остановленные кулачки; 8 — второй ряд роликов; 9 — беговая дорожка ведомого кулачка; 10 — ведомый вал; 11 — корпус
Figure 4 — Reduction unit for torque amplifier with spherical roller gears (a — design scheme; b — general view): 1 — drive shaft;
2 — eccentric; 3 — composite pinion; 4 — first row of rollers; 5 — racetrack formed by stopped cams; 6, 7 — stopped cams;
8 — second row of rollers; 9 — racetrack of the driven cam; 10 — driven shaft; 11 — housing

работе в режиме однократно-пиковых нагрузок. Усилитель обеспечил момент затяжки болтового соединения с резьбой М12 (класс прочности 6.8 по ГОСТ 1759-70), равный 22 Н·м, при использовании привода электродрели мощностью 550 Вт, и момент 39 Н·м с ручным приводом.

Расчеты по приведенной методике также показали, что при диаметре корпуса $D_{\nu} = 200$ мм максимальный передаваемый момент, определяемый по формуле (19), составляет около 120 Н·м при использовании указанных выше материалов и термообоработки и передаточном отношении, не превышающем 200. Критерием технического уровня редуктора является удельная масса — отношение массы к максимальному передаваемому моменту. Анализ характеристик изготовленных образцов и разработанных компьютерных моделей СРП показал значение этого показателя 0,11...0,18 кг (Н.м), что соответствует показателям известных редукторов (червячных и зубчатых) общемашиностроительного назначения российских производителей.

Заключение. Разработанная методика расчета и проектирования позволяет определить основные геометрические параметры сферических роликовых передач с двухрядным сателлитом, оптимизированные по критерию максимального КПД с учетом максимальной нагрузочной способности (максимального передаваемого момента) при заданных радиальных габаритах передачи. Основным критерием прочностной надежности является усталостная выносливость поверхностей основных элементов передачи — роликов и беговых дорожек. Методика позволяет разрабатывать редукторные механизмы с передаточными отношениями из диапазона 16...200 для передачи моментов до 120 Н·м с диаметром корпуса до 200 мм. СРП с двухрядным сателлитом в перспективе могут применяться в приводных системах вместо червячных передач при необходимости обеспечить передаточное отношение до 60, а также конкурировать с волновыми и планетарными зубчатыми передачами при необходимости обеспечить передаточное отношение 60...200 при установленных ограничениях на габариты привода. При постоянном режиме работы привода и заданном ресурсе, превышающем 10⁵ циклов нагружений, теоретические зависимости методики должны быть подтверждены результатами ресурсных испытаний.

Список литературы

- Chen, E. The optimum design of KHV planetary gears with small tooth differences / E. Chen, D. Walton // International Journal of Machine Tools and Manufacture. — 1990. — Vol. 30(1). — Pp. 99–109.
- Liao, Y.G. Analysis of multi-speed transmission and electrically continuous variable transmission using lever analogy method for speed ratio determination / Y.G. Liao, M-Y. Chen // Advances in Mechanical Engineering. — 2017. — Vol. 9(8). — Pp. 1–12.
- Лустенков, М.Е. Планетарные шариковые передачи: особенности прочностных расчетов / М.Е. Лустенков // Вестн. машиностроения. — 2010. — № 9. — С. 13–17.
- Molyneux, W.G. The internal bevel gear and its applications / W.G. Molyneux // Proc. Inst. Mech. Eng. — 1997. — G 211. — Pp. 39–61.
- Kinematic modeling for the Nutation Drive Based on Screw Theory / J. Hong [et al.] // Procedia CIRP. — 2015. — 36. — Pp. 123–128.
- Wang, G.X. Modeling of Nutation Drive with Rolling Teeth / G.X. Wang, T.M. Guan // Applied Mechanics and Materials. — 2009. — 16–19. — Pp. 708–712.
- Frumusanu, G.R. Technological solution to profile and generate the teeth of central gear for precessional gear drives / G.R. Frumusanu, N. Oancea // Int. J. Adv. Manuf. Technol. — 2013. — Vol. 67. — Pp. 687–699.

- Лустенков, М.Е. Оценка кинематических возможностей и КПД сферической и роликовой передач / М.Е. Лустенков, Е.С. Лустенкова // Вестн. машиностроения. — 2019. — № 3. — С. 25–28.
- Лустенков, М.Е. Теоретические и экспериментальные исследования сферических роликовых передач / М.Е. Лустенков, Е.С. Лустенкова // Вестн. Ижевского гос. техн. ун-та. — 2017. — № 20(1). — С. 23–27.
- Сферические роликовые передачи: расчет на прочность / И.С. Сазонов [и др.] // Вестн. Белорусско-Российского ун-та. — 2017. — № 2(55). — С. 98–107.
- 11. Lustenkov, M.E. Load Capacity of Spherical Roller Transmission with Double-Row Pinion Load Capacity of Spherical

LUSTENKOVA Ekateryna S.

Senior Lecturer of the Department "Fundamentals of Machine Design" E-mail: fittsova@gmail.com Belarusian-Russian University, Mogiley, Republic of Belarus

Roller Transmission with Double-Row Pinion / M.E. Lustenkov, E.S. Lustenkova // IOP Conf. Series: Materials Science and Engineering. — 2020. — 795 p.

- Лустенкова, Е.С. Определение оптимальных геометрических параметров сферических роликовых передач по критерию максимального КПД / Е.С. Лустенкова // Вестн. Белорусско-Российского ун-та. — 2019. — № 4(65). — С. 34–42.
- Биргер, И.А. Расчет на прочность деталей машин / И.А. Биргер, Б.Ф. Шорр, Г.Б. Иосилевич. — М.: Машиностроение, 1993. — 639 с.
- Лустенков, М.Е. Детали машин: учеб. пособие / М.Е. Лустенков. — Могилев: Белорус.-Рос. ун-т, 2018. — 240 с.

Received 05 February 2021.

PROCEDURE FOR CALCULATION AND DESIGN OF SPHERICAL ROLLER GEARS WITH DOUBLE-ROW PINION

The article presents a method for calculating and designing spherical roller gears with a double-row pinion. The studied gears are analogs of planetary gears with a double-wheel pinion. They make it possible to implement a wide range of gear ratios. The advantages of spherical roller gears include small dimensions, low material consumption, and layout properties. A special feature of the proposed calculation algorithm is the search for optimal geometric gears parameters according to the criteria of maximum efficiency coefficient taking into account maximum load capacity for a given maximum radial dimensions. The main criterion of strength is fatigue endurance. The method includes design and verification calculations. It makes it possible to develop the small-sized speed reducers for low-speed drives for various purposes.

Keywords: spherical roller gear, spherical mechanism, kinematic scheme, force analysis, strength calculation, method of calculation and design

DOI: https://doi.org/10.46864/1995-0470-2021-2-55-18-24

References

- 1. Chen E., Walton D. The optimum design of KHV planetary gears with small tooth differences. *International journal of machine tools and manufacture*, 1990, vol. 30(1), pp. 99–109.
- Liao Y.G., Chen M.-Y. Analysis of multi-speed transmission and electrically continuous variable transmission using lever analogy method for speed ratio determination. *Advances in mechanical engineering*, 2017, vol. 9(8), pp. 1–12.
- Lustenkov M.E. Planetarnye sharikovye peredachi: osobennosti prochnostnykh raschetov [Planetary ball gears: features of strength calculations]. *Vestnik mashinostroeniya*, 2010, no. 9, pp. 13–17 (in Russ.).
- Molyneux W.G. The internal bevel gear and its applications. *Proceedings of the institution of mechanical engineers, Part G*, 1997, vol. 211, iss. 1, pp. 39–61.
 Hong J., Yao L., Ji W., Huang Z. Kinematic modeling for the *GUP* 2016.
- Hong J., Yao L., Ji W., Huang Z. Kinematic modeling for the nutation drive based on screw theory. *Procedia CIRP*, 2015, vol. 36, pp. 123–128.
- Wang G.X., Guan T.M. Modeling of nutation drive with rolling teeth. *Applied mechanics and materials*, 2009, vols. 16–19, pp. 708–712.
- Frumusanu G.R., Oancea N. Technological solution to profile and generate the teeth of central gear for precessional gear drives. *International journal of advanced manufacturing technology*, 2013, vol. 67, pp. 687–699.
- Lustenkov M.E., Lustenkova E.S. Otsenka kinematicheskikh vozmozhnostey i KPD sfericheskoy i rolikovoy peredach [Assessment of kinematic capabilities and efficiency of spherical and roller gears]. *Vestnik mashinostroyeniya*, 2019, no. 3, pp. 25–28 (in Russ.).

- Lustenkov M.E., Lustenkova E.S. Teoreticheskie i eksperimentalnye issledovaniya sfericheskikh rolikovykh peredach [Theoretical and experimental research of spherical roller transmissions]. *Vestnik IzhGTU imeni M.T. Kalashnikova*, 2017, vol. 20, no. 1, pp. 23–27 (in Russ.).
- Sazonov I.S., Lustenkov M.E., Lustenkova E.S., Prudnikov A.P., Razgonov M.V. Sfericheskie rolikovye peredachi: raschet na prochnost [Spherical roller transmission: strength calculation]. *Vestnik Belorussko-Rossiyskogo universiteta*, 2017, no. 2(55), pp. 98–107 (in Russ.).
- 11. Lustenkov M.E., Lustenkova E.S. Load capacity of spherical roller transmission with double-row pinion load capacity of spherical roller transmission with double-row pinion. *IOP conference series: materials science and engineering*, 2020, vol. 795. Available at: https://iopscience.iop.org/article/10.108 8/1757-899X/795/1/012020.
- Lustenkova E.S. Opredelenie optimalnykh geometricheskikh parametrov sfericheskikh rolikovykh peredach po kriteriyu maksimalnogo KPD [Determination of the optimal geometric parameters of spherical roller transmissions according to the criterion of maximum efficiency]. *Vestnik Belorussko-Rossiyskogo universiteta*, 2019, no. 4(65), pp. 34–42 (in Russ.).
 Birger I.A., Shorr B.F., Iosilevich G.B. *Raschet na prochnost*
- Birger I.A., Shorr B.F., Iosilevich G.B. Raschet na prochnost detaley mashin [Strength calculation of machine parts]. Moscow, Mashinostroenie Publ., 1993. 639 p. (in Russ.).
- Lustenkov M.E. *Detali mashin* [Machine parts]. Mogilev, Belorussko-Rossiyskiy universitet Publ., 2020. 240 p. (in Russ.).