

MAUUNHOCTPONTEJIBHIDE MATEPNAJIBI NI TEXHOJOFNN

УДК 621.762:621.921.34

В.Т. СЕНЮТЬ, канд. техн. наук

ведущий научный сотрудник лаборатории наноструктурных и сверхтвердых материалов¹ E-mail: vsenyut@tut.by

А.М. ПАРНИЦКИЙ, канд. техн. наук

старший научный сотрудник лаборатории наноструктурных и сверхтвердых материалов¹ E-mail: europacorp@tut.by

В.И. ЖОРНИК, д-р техн. наук, проф.

начальник отделения технологий машиностроения и металлургии — заведующий лабораторией наноструктурных и сверхтвердых материалов¹ E-mail: zhornik@inmash.basnet.by

¹Объединенный институт машиностроения НАН Беларуси, г. Минск, Республика Беларусь

Поступила в редакцию 29.08.2022.

РАЗРАБОТКА МАТЕМАТИЧЕСКОЙ МОДЕЛИ ПРОЦЕССА СИНТЕЗА ПОЛИКРИСТАЛЛИЧЕСКОГО СВЕРХТВЕРДОГО МАТЕРИАЛА НА ОСНОВЕ КУБИЧЕСКОГО НИТРИДА БОРА ИЗ МОДИФИЦИРОВАННОГО АЛЮМИНИЕМ ВЮРЦИТНОГО НИТРИДА БОРА

Разработана математическая модель технологического процесса синтеза в условиях высоких давлений P и температур T поликристаллического сверхтвердого материала на основе кубического нитрида бора (cBN). Сверхтвердый материал получен из порошка вюрцитного нитрида бора (wBN), модифицированного алюминием Al, являющимся инициатором процесса фазового превращения $wBN \rightarrow cBN$. В результате моделирования рассчитаны граничные параметры P и T синтеза сверхтвердого материала и необходимое количество добавки Al. Установлено, что синтез материала C0 твердостью на уровне C0 C1 C1 и трещиностойкостью в пределах C10 C1 C2 C2 C3 C4 содержание добавки C4 должно составлять C5 C6 C9 масс.%.

Ключевые слова: математическая модель, кубический нитрид бора, вюрцитный нитрид бора, модифицирование, синтез

DOI: https://doi.org/10.46864/1995-0470-2022-4-61-46-52

Введение. Синтез поликристаллических сверхтвердых материалов (ПСТМ) на основе сВN с заданными структурно-фазовым составом и физико-механическими характеристиками является важной задачей инструментального производства. Известно, что ПСТМ из сВN (PcBN), как правило, получают либо спеканием порошков сВN и композиций на их основе, либо за счет фазового превращения графитоподобного нит-

рида бора (hBN) или wBN в сBN в условиях высоких P и T [1].

PcBN из wBN, известные под марками «гексанит-Р» (композит-10), «ПТНБ» (композит-09), «вюрцин», «вюрбон», получают методом горячего прессования порошка wBN в условиях высоких P и T, при которых происходит частичное или полное превращение wBN в cBN. Отличительной особенностью таких ПСТМ является их мелкозер-

нистая (нанодисперсная) структура, дающая возможность эксплуатировать данный материал при значительных ударных нагрузках [2].

На физико-механические свойства PcBN влияет структура материала, которая определяется механизмами фазового превращения wBN \rightarrow cBN, зависящими, в свою очередь, от параметров термобарической обработки [3]. На режимы фазового превращения может влиять и использование различных активирующих добавок. Известно, что применение добавок cBN, B, TiB_2 может способствовать как незначительному снижению T фазового превращения wBN в cBN при заданном давлении, так и приводить к повышению P и T превращения [4].

Повысить эффективность превращения wBN → cBN в процессе спекания под давлением позволяет прокатка исходных порошков wBN [5], введение в реакционную шихту ультрадисперсных порошков алмаза [6], а также механоактивация wBN, в т. ч. с добавками наноалмазов [7].

В [8] было показано, что предварительное химико-термическое модифицирование порошков hBN или wBN алюминием способствует более значительному снижению параметров фазового превращения указанных стадий в сВN и формированию поликристаллического материала на его основе с высоким уровнем микротвердости и трещиностойкости.

Поскольку PcBN получают с использованием дорогостоящей оснастки при экстремально высоких P и T, задача определения оптимальных параметров синтеза таких ПСТМ, обеспечивающих их минимальную себестоимость при заданном уровне эксплуатационных показателей материала, представляется актуальной.

Цель работы — разработка экспериментальностатистической модели получения PcBN из wBN, модифицированного Al в условиях высоких *P* и *T*.

Методики и исходные материалы. В качестве исходного материала для синтеза ПСТМ применяли наноструктурный порошок wBN динамического синтеза производства ПАО «Запорожский абразивный комбинат» (Украина) с размером зерен 0,1–0,3 мкм. Общее содержание нитрида бора (BN) в исходном порошке составляет 98,0–98,9 % при содержании фазы wBN в диапазоне 95,5–96,1 %.

Далее на порошок wBN химико-термическим способом наносили инициатор фазового превращения, в качестве которого был выбран Al. Для этого к навеске порошка wBN добавляли порошок алюми-

ниевой пудры по ГОСТ 5494-95 [9] в пределах концентраций 5–10 масс. %, перемешивали и осуществляли отжиг смеси в герметичном контейнере в парах галогенидов Al при T = 900 °C в течение 1,5–3,0 ч.

Обработку wBN после модифицирования в условиях высоких P и T проводили в аппарате высокого давления типа «наковальня с лункой» при P в диапазоне 4–7 ГПа и T до 2200 °С. В качестве среды, передающей давление, служил контейнер из литографского камня, внутри которого помещался трубчатый графитовый нагреватель с исследуемым материалом.

Микротвердость по Виккерсу и трещиностой-кость исследуемых образцов измерялись на микротвердомере ПМТ-3. Измерения микротвердости осуществлялись по ГОСТ 9450-76 [10] и с нагрузкой 50–200 г. Погрешность измерений составляла ± 5 %. Определение коэффициента трещиностой-кости или вязкости разрушения K_{1c} спеченных композитов выполнены при нагрузке 200 г.

Результаты и их обсуждение. Математическую модель уравнения отклика от независимых переменных с учетом эффектов их взаимодействий и ошибки эксперимента представляем в виде полинома 2-й степени:

$$y = b_0 + \sum_{1 \le i \le k} b_i x_i + \sum_{1 \le i \le l \le k} b_{il} x_i x_l + \sum_{1 \le i \le k} b_{ii} x_i^2,$$

где y — параметр оптимизации; k — число факторов; i, l — номера факторов, $i \neq 1$; x_i , x_l — варьируемые факторы; b_0 , b_i , b_{ii} , b_{ii} — коэффициенты регрессии, описывающие направление и степень влияния каждого из факторов на параметр оптимизации.

Для создания модели процесса получения ПСТМ в виде полинома 2-й степени реализован некомпозиционный план 2-го порядка. Использование некомпозиционных планов, предусматривающих всего три уровня варьирования факторов (+1; 0; -1), упрощает и удешевляет проведение эксперимента. Некомпозиционные планы характеризуются наличием в строках матрицы планирования большого числа нулей, в результате чего существенно упрощается вычисление коэффициентов модели [11, 12].

На основе априорной информации были выбраны уровни и интервалы варьирования факторов (таблица 1).

Матрица некомпозиционного плана 2-го порядка для трех факторов представлена в таблице 2.

В соответствии с условиями опытов (см. таблицу 2) проводили термобарическое спекание модифицированного wBN и замеряли значения твердости

Таблица 1 — Уровни и интервалы варьирования факторов Table 1 — Levels and intervals of factor variation

Фонторуу (поромотруу)	Кодовое	Интервалы	Уровни факторов			
Факторы (параметры)	обозначение	варьирования	основной 0	верхний +1	нижний –1	
Температура спекания <i>T</i> , °C	x_1	250	2000	2250	1750	
Давление P , $\Gamma\Pi$ а	x_2	1,5	5,5	7,0	4,0	
Количество добавки порошка алюминия $C_{\rm Al}$, масс.%	x_3	2,5	7,5	10	5	

№ опыта	x_0	x_1	<i>x</i> ₂	x_3	x_1x_2	x_1x_3	x_2x_3	x_1^2	x_{2}^{2}	x_3^2	Y_{HV} , ГПа	Y_{K1c} , M Π a· $M^{1/2}$
1	+	+	+	0	+	0	0	+	+	0	39,6	12,2
2	+	+	_	0	_	0	0	+	+	0	4,8	2,7
3	+	_	+	0	_	0	0	+	+	0	26,0	5,9
4	+	_	_	0	+	0	0	+	+	0	7,5	7,2
5	+	0	0	0	0	0	0	0	0	0	25,1	7,0
6	+	+	0	+	0	+	0	+	0	+	36,0	11,0
7	+	+	0	_	0	_	0	+	0	+	33,1	10,4
8	+	_	0	+	0	_	0	+	0	+	29,3	5,2
9	+	_	0	_	0	+	0	+	0	+	24,5	5,0
10	+	0	0	0	0	0	0	0	0	0	28,2	7,5
11	+	0	+	+	0	0	+	0	+	+	34,0	8,2
12	+	0	+	_	0	0	_	0	+	+	30,0	7,4
13	+	0	_	+	0	0	_	0	+	+	5,4	3,1
14	+	0	_	_	0	0	+	0	+	+	5,2	3,0
15	+	0	0	0	0	0	0	0	0	0	25.5	6.8

Таблица 2 — Матрица планирования и результаты опытов Table 2 — Planning matrix and results of experiments

и коэффициента трещиностойкости. Значения Y_{HV} и Y_{K1c} , указанные в таблице 2, получены как средние из трех измерений.

По данным опытов, проведенных согласно матрице планирования, получена модель, характеризующая зависимость Y_{HV} от исследуемых факторов процесса, представляющая полином 2-й степени:

$$Y_{HV} = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_{12} x_1 x_2 + b_{13} x_1 x_3 + b_{23} x_2 x_3 + b_{11} x_1^2 + b_{22} x_2^2 + b_{33} x_3^2.$$
(1)

Коэффициенты модели вычисляли по приведенным в [11] формулам:

$$b_{0} = \frac{1}{3} \sum_{u=1}^{3} y_{0u}; b_{i} = \frac{1}{8} \sum_{j=1}^{15} x_{ij} y_{j}; b_{il} = \frac{1}{4} \sum_{j=1}^{15} x_{ij} x_{lj} y_{j};$$

$$b_{ii} = \frac{1}{4} \sum_{j=1}^{15} x_{ij}^{2} y_{j} - \frac{1}{16} \sum_{i=1}^{3} \sum_{j=1}^{15} x_{ij}^{2} y_{j} - \frac{1}{6} \sum_{u=1}^{3} y_{0u}.$$

После вычислений получены следующие значения коэффициентов уравнения регрессии (с округлением до двух знаков после запятой):

$$b_0 = 26,27; \ b_1 = 3,28; \ b_2 = 13,34; \ b_3 = 1,49;$$

 $b_{12} = 4,08; \ b_{13} = -0,48; \ b_{23} = 0,95;$
 $b_{11} = 2,64; \ b_{22} = -9,43; \ b_{33} = 1,82.$

Дисперсию $s^2\{Y_{HV}\}$ параметра оптимизации определяли по результатам опытов в центре плана (см. таблицу 2, № опыта 5; 10; 15). Для вычисления дисперсии $s^2\{Y_{HV}\}$ составлена вспомогательная таблица 3.

Дисперсии, характеризующие ошибки в определении коэффициентов уравнения регрессии, вычисляли по приведенным в [11] формулам при числе факторов k=3. Получены следующие значения дисперсий:

$$s^{2} \{b_{0}\} = \frac{1}{3} s^{2} \{Y_{HV}\} = 0,95; \ s^{2} \{b_{i}\} = \frac{1}{8} s^{2} \{Y_{HV}\} = 0,36;$$
$$s^{2} \{b_{ii}\} = \frac{1}{4} s^{2} \{Y_{HV}\} = 0,71; \ s^{2} \{b_{ii}\} = \frac{13}{48} s^{2} \{Y_{HV}\} = 0,77.$$

Для проверки значимости коэффициентов модели находим их доверительные интервалы. Доверительный интервал Δb_0 коэффициента b_0 находим по выражению

$$\Delta b_0 = \pm t_T s\{b_0\} = \pm 1,986,$$

где t_T — табличное значение критерия Стьюдента (при числе степеней свободы f = 30 и 5-процентном уровне значимости $t_T = 2,04$):

$$f = (n-1) \cdot N = (3-1) \cdot 15 = 30,$$

где N — число опытов в матрице планирования; n — число параллельных опытов.

Аналогично определяем доверительные интервалы коэффициентов b_i , b_{ii} , b_{ii} :

$$\Delta b_i = \pm t_T s \{b_i\} = \pm 1,216;$$

 $\Delta b_{il} = \pm t_T s \{b_{il}\} = \pm 1,720;$
 $\Delta b_{ii} = \pm t_T s \{b_{ii}\} = \pm 1,790.$

Коэффициент значим, если его абсолютная величина больше доверительного интервала. Коэффициенты b_{13} и b_{23} меньше доверительного интервала, поэтому их можно признать статистически незначимыми и исключить из уравнения регрессии. Тогда уравнение регрессии (1) получает вид:

$$Y_{HV} = 26,27 + 3,28x_1 + 13,34x_2 + 1,49x_3 + 4,08x_1x_2 + 2,64x_1^2 - 9,43x_2^2 + 1,82x_3^2.$$
 (2)

Таблица 3 — Вспомогательная таблица для расчета $s^2\{Y_{HV}\}$ Table 3 — Auxiliary table for calculating $s^2\{Y_{HV}\}$

№ опыта в центре плана	Y_{HV}	$\overline{Y_{HV}}$	$Y_{HV} - \overline{Y_{HV}}$	$\left(Y_{HV} - \overline{Y_{HV}}\right)^2$
5	25,1		-1,2	1,36
10	28,2	26,3	1,9	3,74
15	25,5		-0,8	0,59
$s^2\left\{Y_{HV}\right\} =$	$\frac{s_E}{n_0 - 1}$	$=\frac{5,69}{3-1}$	$s_E = \sum \left(Y_{HV} - \overline{Y_{HV}} \right)^2 = 5,69$	

Адекватность полученной модели проверяем по F-критерию Фишера. Для вычисления дисперсии адекватности $s_{\rm an}^2$ находим сумму квадратов отклонений s_R расчетных значений \hat{Y}_{HV} от экспериментальных Y_{HV} во всех точках плана (таблица 4). Расчетные значения \hat{Y}_{HV} определяем по выражению (2), $s_F = 5,69$ (см. таблицу 3).

Находим дисперсию:

$$s_{\text{a,t}}^2 = \frac{s_R - s_E}{N - k' - (n_0 - 1)} = \frac{14, 2 - 5, 69}{15 - 8 - (3 - 1)} = 1,69,$$

где N — общее количество опытов; k' — количество коэффициентов аппроксимирующего полинома (количество значимых факторов); n_0 — количество опытов в центре плана.

Дисперсия $s^2\{Y_{HV}\}=2,84$ (см. таблицу 3), поэтому расчетное значение F-критерия:

$$F_P = \frac{s_{\text{ag}}^2}{s^2 \{Y_{HV}\}} = 0, 6.$$

Табличное значение F-критерия при 5-процентном уровне значимости и числах степеней свободы для большей дисперсии $m_1=N-k'-n_0^+$ 1=5, меньшей дисперсии $m_2=n_0-1=2$, $F_T=19,37$. Так как $F_P < F_T$, полученная модель (2) адекватна при 5-процентном уровне значимости.

Анализ уравнения (2) показывает, что в пределах установленных интервалов варьирования факторов увеличение фактора x_1 в большей степени влияет на увеличение показателя твердости, чем у факторов x_2 и x_3 , однако в связи с наличием квадратичных членов в уравнении (2) зависимость эта носит нелинейный характер, что наиболее сильно проявляется через фактор x_1 .

Таблица 4 — Вспомогательная таблица для вычисления s_R Table 4 — Auxiliary table for calculating s_R

№ опыта	Y_{HV}	$\hat{Y}_{\!\scriptscriptstyle HV}$	$Y_{HV} - \hat{Y}_{HV}$	$\left(Y_{HV}-\hat{Y}_{HV}\right)^2$			
1	39,6	40,2	-0,6	0,3			
2	4,8	5,3	-0,5	0,3			
3	26,0	25,5	0,5	0,3			
4	7,5	6,9	0,6	0,3			
5	25,1	26,3	-1,2	1,4			
6	36,0	35,5	0,5	0,3			
7	33,1	32,5	0,6	0,3			
8	29,3	28,9	0,4	0,1			
9	24,5	26,0	-1,5	2,1			
10	28,2	26,3	1,9	3,7			
11	34,0	33,5	0,5	0,3			
12	30,0	30,5	-0,5	0,3			
13	5,4	6,8	-1,4	2,0			
14	5,2	3,8	1,4	1,9			
15	25,5	26,3	-0,8	0,6			
$s_R = \sum (Y_{HV} - Y_{HV})^2 = 14,2$							

Для удобства интерпретации полученных результатов и использования уравнения (2) для практических расчетов необходимо перейти от кодированных значений факторов (x_1, x_2, x_3) к натуральным значениям (T, P, C_{Al}) . Для этого использовали следующие формулы:

$$x_1 = \frac{T - T_0}{\Delta T}; \quad x_2 = \frac{P - P_0}{\Delta P}; \quad x_3 = \frac{C_{Al} - C_{Al0}}{\Delta C_{Al}},$$

где $T_0, P_0, C_{\rm Al0}$ — натуральные значения факторов на основных уровнях; $\Delta T, \Delta P, \Delta C_{\rm Al}$ — значения интервалов варьирования.

Таким образом, в соответствии с таблицей 1,

$$x_1 = \frac{T - 2000}{250}$$
; $x_2 = \frac{P - 5,5}{1,5}$; $x_3 = \frac{C_{AI} - 7,5}{2,5}$.

С учетом перехода к натуральным значениям факторов уравнение регрессии (2) примет вид:

$$Y_{HV} = 100,49 - 0,0747 \cdot T + 0,22 \cdot P - 2 \cdot C_{AI} + 0,0027 \cdot T \cdot P - 0,000016 \cdot T^2 - 0,45 \cdot P^2 + 0,16 \cdot C_{AI}^2$$
(3)

Аналогично получено уравнение регрессии для Y_{K1c} :

$$Y_{K1c} = 7.1 + 1.63x_1 + 2.21x_2 + 2.7x_1x_2 + + 1.19x_1^2 - 1.29x_2^2 - 0.39x_3^2.$$
 (4)

Полученная модель адекватна при 5-процентном уровне значимости, так как

$$F_P = \frac{s_{\text{a,t}}^2}{s^2 \{Y_{K1c}\}} = 14,59 < F_T = 19,37.$$

После перехода от кодированных значений факторов (x_1, x_2, x_3) к натуральным (T, P, C_{Al}) уравнение (4) примет вид:

$$Y_{K1c} = 66,32 + 0,000016 \cdot T_2 - 0,45 \cdot P_2 - 0,16 \cdot C_{A1}^2 + 0,0027 \cdot T \cdot P - 0,0747 \cdot T + 0,22 \cdot P + 2,4 \cdot C_{A1}.$$
(5)

Анализ уравнения (5) показывает, что в пределах установленных интервалов варьирования увеличение фактора x_1 также в большей степени влияет на увеличение коэффициента трещиностойкости, чем факторы x_2 и x_3 , однако в связи с наличием квадратичных членов в уравнении (5) зависимость эта носит нелинейный характер, что наиболее сильно проявляется через фактор x_1 .

Уравнения регрессии (3) и (5) можно использовать для выбора технологических режимов термобарического спекания ПСТМ, обеспечивающих оптимальные значения твердости и коэффициента трещиностойкости в зависимости от исследуемых факторов $(T, P, C_{\rm Al})$. На рисунках 1 и 2 представлены полученные с помощью уравнений (3) и (5) графические зависимости твердости и коэффициента трещиностойкости от исследуемых факторов. При построении поверхности откликов (программа SigmaPlot 12) варьировались только два фактора.

Из рисунков 1 и 2 видно, что с ростом температуры спекания T микротвердость материала повышается до определенного значения; дальнейшее

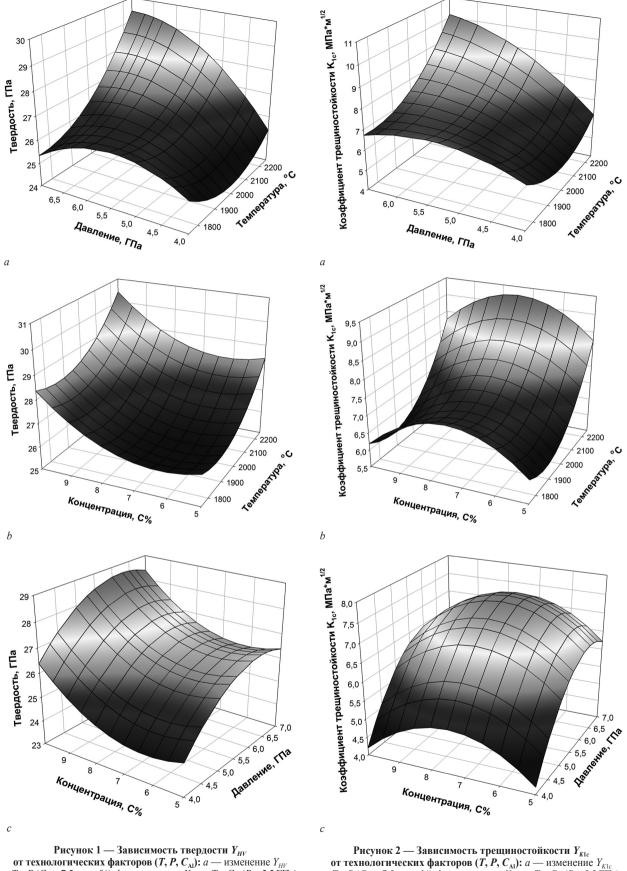


Рисунок 1 — Зависимость твердости Y_{HV} от технологических факторов (T, P, C_{Al}) : a — изменение Y_{HV} от T и P $(C_{Al} = 7.5 \text{ масc. }\%)$; b — изменение Y_{HV} от T и C_{Al} $(P = 5.5 \text{ }\Gamma \text{II}\text{ }a)$; c — изменение Y_{HV} от P и C_{Al} (T = 2000 ° C) Figure 1 — Dependence of the hardness Y_{HV} on technological factors (T, P, C_{Al}) : a — variation Y_{HV} with T and P $(C_{Al} = 7.5 \text{ wt.}\%)$; b — variation Y_{HV} with T and C_{Al} (P = 5.5 GPa); c — variation Y_{HV} with T and T_{Al} T_{Al} T_{Al} 0 T_{Al} 0

увеличение T приводит к снижению микротвердости как вследствие рекристаллизации зерен сВN, так и в результате образования в материале hBN [13]. Изменение P и концентрации добавки $C_{\rm Al}$ также приводят к изменению значений микротвердости, но в меньшей степени. При этом значения микротвердости материала HV достигают 28,5–30,4 ГПа при T=2100-2250 °C, P=5,5-7,0 ГПа и $C_{\rm Al}=7,5-10,0$ масс. %.

Основным фактором, определяющим величину коэффициента трещиностойкости PcBN, является P, а T и C_{Al} оказывают меньшее влияние (см. рисунок 2). Значения K_{1c} в пределах 7,5–10,3 МПа·м¹²2 материала достигаются при T=2100-2250 °C, P=5,5-7,0 ГПа и $C_{Al}=7,5-9,5$ %. Сверхтвердый материал с достигнутым уровнем свойств может быть использован для лезвийной обработки закаленных до уровня 55–64 HRC сталей [14]. Дальнейшее увеличение микротвердости и трещиностойкости PcBN сопряжено с повышением давления и температуры спекания, что технически усложняет задачу получения сверхтвердого материала и увеличивает его себестоимость.

Заключение. На основании полученных результатов показано, что для синтеза PcBN с микротвердостью на уровне 28,5–30,4 ГПа и коэффициентом трещиностойкости в диапазоне 7,5–10,3 МПа·м¹/2 параметры процесса спекания в условиях высоких P и T должны находиться в следующих пределах: P=5,5-7,0 ГПа, T=2100-2250 °C, а количество добавки Al необходимо варьировать в диапазоне $C_{\rm Al}=7,5-10,0$ масс. %. Практическая проверка полученной экспериментально-статистической модели показала ее адекватность в пределах выбранных интервалов варьирования технологических параметров спекания при высоких P и T.

Список литературы

 Инструменты из сверхтвердых материалов / Г.П. Богатырева [и др.]; под ред. Н.В. Новикова. — М.: Машиностроение, 2005. — 555 с.

- Курдюмов, А.В. Фазовые превращения в углероде и нитриде бора / А.В. Курдюмов, А.Н. Пилянкевич. — Киев: Наук. думка, 1979. — 188 с.
- Олейник, Г.С. Структурные механизмы формирования керамики на основе вюрцитной модификации нитрида бора / Г.С. Олейник // Сверхтвердые материалы. 1993. № 6. С. 3–12.
- Akashi, T. Effect of TiB₂ and boron additions on the stability of wurtzite-type boron nitride at high temperatures and pressures / T. Akashi, A. Sawaoka, S. Saito // J. Am. Ceram. Soc. 1978. Vol. 61, iss. 5–6. Pp. 245–246. DOI: https://doi.org/10.1111/j.1151-2916.1978.tb09290.x.
- Волкогон, В.М. Влияние сдвиговых напряжений на полиморфные превращения в вюрцитном нитриде бора / В.М. Волкогон // Сверхтвердые материалы. — 2003. — № 1. — С. 22–31.
- Особенности фазовых превращений в системе «ВN_в алмаз» в зависимости от характеристик алмаза при ее спекании в условиях высоких давлений / В.М. Волкогон [и др.] // Современные проблемы производства и ремонта в промышленности и на транспорте: материалы 17-го междунар. науч.-техн. семинара, Свалява, 20–24 февр. 2017 г. Киев: АТМ Украины, 2017. С. 71–73.
- Синтез ПСТМ из механоактивированного вюрцитного нитрида бора с добавками наноалмазов / В.Т. Сенють [и др.] // Новые материалы и технологии: порошковая металлургия, композиционные материалы, защитные покрытия, сварка: материалы 14-й междунар. науч.-техн. конф., Минск, 9–11 сент. 2020 г. / НАН Беларуси [и др.]; редкол.: А.Ф. Ильющенко [и др.]. Минск: Беларус. навука, 2020. С. 423–429.
- Сенють, В.Т. Синтез сверхтвердого материала на основе модифицированного вюрцитного нитрида бора / В.Т. Сенють // Современные вопросы производства и ремонта в промышленности и на транспорте: материалы 19-го междунар. науч.-техн. семинара, Кошице, 18–22 февр. 2019 г. — Киев: ATM Украины, 2019. — С. 184–188.
- Пудра алюминиевая. Технические условия: ГОСТ 5494-95. Взамен ГОСТ 5494-71; введ. 01.01.97. — Минск: Стандартинформ, 2006. — 12 с.
- Измерение микротвердости вдавливанием алмазных наконечников: ГОСТ 9450-76. Взамен ГОСТ 9450-60; введ. 01.01.77. М.: Изд-во стандартов, 1993. 35 л.
- Спиридонов, А.А. Планирование эксперимента при исследовании технологических процессов / А.А. Спиридонов. М.: Машиностроение, 1981. 184 с.
- Хейфец, М.Л. Математическое моделирование технологических процессов / М.Л. Хейфец. — Новополоцк: ПГУ, 1999. — 104 с.
- Голубев, А.С. Нитрид бора. Структура, свойства, получение / А.С. Голубев, А.В. Курдюмов, А.Н. Пилянкевич; АН УССР, Ин-т пробл. материаловедения. Киев: Наук. думка, 1987. 198 с.
- Финишная обработка поверхностей при производстве деталей / С.А. Клименко [и др.]; под общ. ред. С.А. Чижика, М.Л. Хейфеца. Минск: Беларус. навука, 2017. 376 с.

SENYUT Vladimir T., Ph. D. in Eng.

Leading Researcher of the Laboratory of Nanostructured and Superhard Materials¹ E-mail: vsenyut@tut.by

PARNITSKY Alexander M., Ph. D. in Eng.

Senior Researcher of the Laboratory of Nanostructured and Superhard Materials¹ E-mail: europacorp@tut.by

ZHORNIK Viktor I., D. Sc. in Eng., Prof.

Head of the Department of Technologies of Mechanical Engineering and Metallurgy – Head of the Laboratory of Nanostructured and Superhard Materials¹

E-mail: zhornik@inmash.basnet.by

¹Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus

DEVELOPMENT OF A MATHEMATICAL MODEL OF THE SYNTHESIS OF A POLYCRYSTALLINE SUPERHARD MATERIAL BASED ON CUBIC BORON NITRIDE FROM WURZITE BORON NITRIDE MODIFIED WITH ALUMINUM

A mathematical model is developed for the technological process of synthesis under conditions of high pressures P and temperatures T of a polycrystalline superhard material based on cubic boron nitride (cBN). The superhard material is obtained from a wurtzite boron nitride (wBN) powder modified with aluminum Al, which is the initiator of the wBN \rightarrow cBN phase transformation process. As a result of modelling, the boundary parameters P and T of the superhard material synthesis and the required amount of aluminum addition are calculated. It has been established that the synthesis of a material with a hardness of 28-30 GPa and crack resistance in the range of 7-10 MPa·m^{1/2} is carried out in the pressure range of 5-7 GPa at temperatures of 2.100-2.250 °C, and the aluminum additive content should be 7.5-10.0 wt.%.

Keywords: mathematical model, cubic boron nitride, wurzite boron nitride, modification, synthesis

DOI: https://doi.org/10.46864/1995-0470-2022-4-61-46-52

References

- Bogatyreva G.P., et al. *Instrumenty iz sverkhtverdykh materia-lov* [Tools made of superhard materials]. Moscow, Mashinostroenie Publ., 2005. 555 p. (in Russ.).
- Kurdyumov A.V., Pilyankevich A.N. Fazovye prevrashcheniya v uglerode i nitride bora [Phase transformations in carbon and boron nitride]. Kiev, Nauchnaya mysl Publ., 1979. 188 p. (in Russ.).
- Oleynik G.S. Strukturnye mekhanizmy formirovaniya keramiki na osnove vyurtsitnoy modifikatsii nitrida bora [Structural mechanisms of ceramic formation based on wurtzite modification of boron nitride]. Sverkhtverdye materialy, 1993, no. 6, pp. 3–12 (in Russ.).
- Akashi T., Sawaoka A., Saito S. Effect of TiB₂ and boron additions on the stability of wurtzite-type boron nitride at high temperatures and pressures. *Journal of the American ceramic society*, 1978, vol. 61, iss. 5–6, pp. 245–246. DOI: https://doi.org/10.1111/j.1151-2916.1978.tb09290.x.
- Volkogon V.M. Vliyanie sdvigovykh napryazheniy na polimorfnye prevrashcheniya v vyurtsitnom nitride bora [Effect of shear stresses on polymorphic transformations in wurtzite boron nitride]. Sverkhtverdye materialy, 2003, no. 1, pp. 22–31 (in Russ.).
- 6. Volkogon V.M., et al. Osobennosti fazovykh prevrashcheniy v sisteme "BN_v almaz" v zavisimosti ot kharakteristik almaza pri ee spekanii v usloviyakh vysokikh davleniy [Features of phase transformations in the "BN_B diamond" system depending on the characteristics of the diamond during its sintering under high pressure conditions]. Materialy 17 Mezhdunarodnogo nauchno-tekhnicheskogo seminara "Sovremennye problemy proizvodstva i remonta v promyshlennosti i na transporte" [Proc. 17th International scientific and technical seminar "Modem problems of production and repair in industry and transport"]. Kiev, 2017, pp. 71–73 (in Russ.).
- Senyut V.T., Kovaleva S.A., Valkovich I.V., Mosunov E.I. Sintez PSTM iz mekhanoaktivirovannogo vyurtsitnogo nitrida bora s dobavkami nanoalmazov [Synthesis of polycrystalline superhard material from mechanically activated wurtzite boron nitride with nanodiamond additives]. Materialy 14 Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii "Novye materialy i tekhno-

- logii: poroshkovaya metallurgiya, kompozitsionnye materialy, zashchitnye pokrytiya, svarka" [Proc. 14th International scientific and technical conference "New materials and technologies: powder metallurgy, composite materials, protective coatings, welding"]. Minsk, 2020, pp. 423–429 (in Russ.). Senyut V.T. Sintez sverkhtverdogo materiala na osnove modifi-
- Senyut V.T. Sintez sverkhtverdogo materiala na osnove modifitsirovannogo vyurtsitnogo nitrida bora [Synthesis of superhard material based on modified wurtzite boron nitride]. Materialy 17 Mezhdunarodnogo nauchno-tekhnicheskogo seminara "Sovremennye voprosy proizvodstva i remonta v promyshlennosti i na transporte" [Proc. 17th International scientific and technical seminar "Modern issues of production and repair in industry and transport"]. Kiev, 2019, pp. 184–188 (in Russ.).
 State Standard 5494-95. Pudra alyuminievaya. Tekhnicheskie
- State Standard 5494-95. Pudra alyuminievaya. Tekhnicheskie usloviya [Pigmentary aluminium. Specifications]. Minsk, Standartinform Publ., 2006. 12 p. (in Russ.).
- State Standard 9450-76. Izmerenie mikrotverdosti vdavlivaniem almaznykh nakonechnikov [Measurements microhardness by diamond instruments indentation]. Moscow, Standartov Publ., 1996. 35 p. (in Russ.).
- 11. Spiridonov A.A. *Planirovanie eksperimenta pri issledovanii tekhnologicheskikh protsessov* [Planning of an experiment in the study of technological processes]. Moscow, Mashinostroenie Publ., 1981. 184 p. (in Russ.).
- 12. Kheifetz M.L. *Matematicheskoe modelirovanie tekhnologi-cheskikh protsessov* [Mathematical modelling of technological processes]. Novopolotsk, Polotskiy gosudarstvennyy universitet Publ., 1999. 104 p. (in Russ.).
- Golubev A.S., Kurdyumov A.V., Pilyankevich A.N. Nitrid bora. Struktura, svoystva, poluchenie [Boron nitride. Structure, properties, production]. Kiev, Nauchnaya mysl Publ., 1987. 200 p. (in Russ.).
- Klimenko S.A., et al. Finishnaya obrabotka poverkhnostey pri proizvodstve detaley [Finishing treatment of surfaces in the production of parts]. Minsk, Belorusskaya nauka Publ., 2017. 376 p. (in Russ.).