Smart Search 

Title of the article



YANKOVSKIY Andrei P., D. Sc. in Phys.-Math., Leading Research Scientist of Laboratory of Fast Processes Physics, Khristianovich Institute of Theoretical and Applied Mechanics the Siberian Branch of the Russian Academy of Science, Novosibirsk, Russia, E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Year 2016 Issue 3 Pages 87-96
Type of article RAR Index UDK 539.376 Index BBK  

The unsteady creep of homogeneous and metal-composite beams with irregular layered structure is considered. Beams consist of thin walls and shelves attached to them at top and bottom (bearing layers). The walls and bearing layers made of homogeneous isotropic materials. The mechanical behavior of these materials is described by a nonlinear hereditary theory of creep (Yu. Rabotnov). On the basis of the hypotheses of the Timoshenko theory with involvement of the ideas of method of steps in time the problem is formulated for the inelastic flexural deformation of such beams with account of their weakened resistance of their walls to the transverse shear. It is shown that in discrete moments of time the mechanical behavior of these materials layers obeys formally the defining relations of nonlinearelastic isotropic body with an initial stress state that is known. The secant modulus method is used for linearization of the task at each discrete time moment. Characteristics of the flexural behavior of three- and five-layer homogeneous and metal-composite beams under short-and long-term loading are studied. Statically determinate double-seat and cantilever beams are considered under the action of uniformly distributed transverse load of Heaviside type. It is found that the use of the classical theory of calculation of such beams leads to the prediction of unreasonably understated their flexibility, especially under creep conditions. In beams with reinforced bearing layers it is shown that the creep mainly develops due to the shear strain which actively accumulates in the walls of such structures.


unsteady creep, laminated beams, nonlinear strain, inelastic deformation, Timoshenko theory

  You can access full text version of the article
  • Karpov V.V. Prochnost’ i ustoichivost’ podkrepljennykh obolochek vrashchenia. V 2 ch. Ch. 1. Modeli i algoritmy issledovania prochnosti i ustoichivosti podkrepljennykh obolochek vrashchenia [Strength and stability of the supported shells of rotation. In 2 parts. A part 1. Models and algorithms of research of strong and stability of the supported shells of rotation]. Moscow, Fizmatlit, 2010. 288 p.
  • Casanova P., Rossi P. Analysis of metallic fibre-reinforced concrete beams submitted to bending. Mater. Construct., 1966, vol. 29, pp. 354-361.
  • Purkiss J.A., Blagojević P. Comparison between the short and long term behaviour of fibre reinforced and unreinforced beams. Composite Struct., 1993, vol. 25, pp. 45-49.
  • Arduini M., Di Tommaso A., Nanni A. Brittle failure in FRP plate and sheet bonded beams. ACI Structural J., 1997, vol. 94, no 4, pp. 363-370.
  • Chen J.F., Teng J.G. Shear capacity of FRP strengthened RC beams: FRC debonding. Construction and Building Materials, 2003, vol. 17, no 1, pp. 27-41.
  • Jumaat M.Z., Alam M.A. Problems associated with plate bonding methods of strengthening reinforced concrete beams. J. of Appl. Sci. Res., 2006, vol. 2, no 10, pp. 703-708.
  • Nemirovskiy Yu.V., Mishchenko A.V., Vokhmianin I.T. Racional’noe i optimal’noe proektirovanie sloistykh sterzhnevykh sistem [Rational and optimum designing of layered rod systems]. Novosibirsk, NSUCE Publ., 2004. 488 p.
  • Rabotnov Yu.N. Polzuchest' elementov konstruktsiy [Creep of structural elements]. Moscow, Nauka Publ., 1966. 752 p.
  • Rabotnov Yu.N. Elementy nasledstvennoy mekhaniki tverdykh tel [Elements of hereditary mechanics of solids]. Moscow, Fizmatgiz, 1977. 384 p.
  • Karpov V.V. Prochnost’ i ustoichivost’ podkrepljennykh obolochek vrashchenia. V 2 ch. Ch. 2. Vychislitel’nyj eksperiment pri staticheskom mekhanicheskom vozdejstvii [Strength and stability of the supported shells of rotation. In 2 parts. A part 2. Computing experiment at static mechanical load]. Moscow, Fizmatlit, 2011. 248 p.
  • Chami G.A., Theriault M., Neale K.W. Creep behaviour of CFRP-strengthened reinforced concrete beams. Construction and Building Materials, 2009, vol. 23, no 4, pp. 1640-1652.
  • Mishchenko A.V., Nemirovskiy Yu.V. Polsuchest' odnorodnykh i sloistych ram na osnove trekhkomponentnoy modely [Creep of homogenious and layered frames based on three-multiplier model]. Izvestiya vuzov. Stroitel'stvo [News of higher educational institutions. Construction], 2009, no 5, pp. 16-24.
  • Feodosev V.I. Soprotivlenie materialov: uchebnik dlja vtuzov [Resistance of materials: the textbook for technical colleges]. Moscow, Nauka Publ., 1986. 512 p.
  • Yankovskii A.P. Issledovanie ustanovivshejsia polzuchesti sloistykh metallokompozitnykh balok s uchetom oslablennogo coprotivlenia poperechnomu sdvigu [Research of steady creep of layered metal-composite beams with account of their weakened resistance to the transverse shear]. Teoreticheskaja i prikladnaja mekhanika: mezhdunarodnyj nauchno-tekhnicheskij sbornik [Theoretical and applied mechanics: the international scientific and technical collection], 2016, vol. 31, pp. 168-175.
  • Yuzikov V.P., Panasenko N.N. Stroitel’naja mekhanika tonkostennykh sterzhnej [Building mechanics of thin-walled rods]. Volgograd, Volgograd scientific Publ., 2013. 361 p.
  • Perelmuter A.V., Slivker V.I. Ustoichivost’ ravnovesia konstrukcij i rodstvennye problemy. Tom 1 [Stability of balance of designs and related problems. That 1], Moscow, SKAD SOFT Publ., 2007. 670 p.
  • Yankovskii A.P. Analiz polzuchesti armirovannykh balok-stenok iz nelinejno-nasledstvennykh materialov v ramkakh vtorogo varianta teorii Timoshenko [Analysis of creep of reinforced beams-wall from nonlinear-hereditary materials within of the second variant of Tymoshenko theory]. Mekhanika kompozicionnykh materialov I konstrukcij [Mechanics of composite materials and designs], 2014, vol. 20, no 3, pp. 469-489.
  • Goldhoff R.M. The application of Rabotnov’s creep parameter. Proc. ASTM, 1961, vol. 61.
  • Turner F.H. A study of the applicability of of Rabotnov’s creep parameter for aluminium alloy. JAS, 1956, vol. 23, no 12.
  • Nikitemko A.F. Polzuchest' i dlitel'naya prochnost'  metallicheskikh materialov [Creep and creep rupture strength metallic materials]. Novosibirsk, NSUCE Publ., 1997. 278 p.
  • Bakhvalov N.S. Chislennye metody (analiz, algebra, obyknovennye differencial’nye uravnenia) [Numerical methods (the analysis, algebra, the ordinary differential equations)]. Moscow, Nauka Publ., 1973. 631 p.
  • Ilyushin A.A., Tunguskova V.G. Trudy. Tom 3. Teoriya termovyazkouprugosti [Works. Vol. 3. The theory of thermo-visco-elastic]. Moscow, Fizmatlit, 2007. 288 p.
  • Khazhinskiy G.M. Modeli deformirovaniya i razrusheniya metallov [Model of deformation and fracture of metals]. Moscow, Nauchny mir Publ., 2011. 231 p.
  • Karpinos D.M. Kompozitsionnye materialy. Spravochnik [Composite materials. Reference Book]. Kiev, Naukova dumka Publ., 1985. 592 p.