Smart Search 


KOZEL Anastasiya G., M. Sc. in Eng., Senior Lecturer of the Department “Structural Мechanics”, Belarusian State University of Transport, Gomel, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

Year 2021
Issue 1
Pages 30–37
Type of article RAR
Index UDK 539.3
Abstract Solutions of problems on axisymmetric bending of an elastic three-layer circular plate on the Winkler and Pasternak foundations are given. The bearing layers are taken as isotropic, for which Kirchhoff’s hypotheses are fulfilled. In a sufficiently thick lightweight, incompressible in thickness aggregate, the Timoshenko model is valid. The cylindrical coordinate system, in which the statements and solutions of boundary value problems are carried out, is connected with the median plane of the filler. On the plate contour, it is assumed that there is a rigid diaphragm that prevents the relative shear of the layers. The system of differential equations of equilibrium is obtained by the variational method. Three types of boundary conditions are formulated. One- and two-parameter Winkler and Pasternak models are used to describe the reaction of an elastic foundation. The solution to the boundary value problem is reduced to finding three desired functions, plate deflection, shear, and radial displacement in the filler. The general analytical solution to the boundary value problem is written out in the case of the Pasternak model in Bessel functions. At the Winkler foundation, the known solution is given in Kelvin functions. A numerical comparison of the displacements and stresses obtained by both models with a uniformly distributed load and rigid sealing of the plate contour is carried out.
Keywords three-layer circular plate, elasticity, bending, stress-strain state, Pasternak and Winkler foundation
  You can access full text version of the article.
  1. Bolotin V.V., Novichkov Yu.N. Mekhanika mnogosloynykh konstruktsiy [Mechanics of laminated constructions]. Moscow, Mashinostroenie Publ., 1980. 375 p. (in Russ.).
  2. Korolev V.I. Sloistye anizotropnye plastinki i obolochki iz armirovannykh plastmass [Laminated anisotropic plates and shells from reinforced plastics]. Moscow, Mashinostroenie Publ., 1965. 272 p. (in Russ.).
  3. Aghalovyan L. Asymptotic theory of anisotropic plates and shells. Singapore, London, World Scientific Publ., 2015. 376 p.
  4. Zhuravkov M.A., Starovoitov E.I. Mekhanika sploshnykh sred. Teoriya uprugosti i plasthichnosti [Continuum mechanics. Theory of elasticity and plasticity]. Minsk, Belorusskiy gosudarstvennyy universitet Publ., 2011. 543 p. (in Russ.).
  5. Solomonov Yu.S., Georgievskiy V.P., Nedbay A.Ya., Andryushin V.A. Prikladnye zadachi mekhaniki kompozitnykh tsilindricheskikh obolochek [Applied problems of mechanics of composite cylindrical shells]. Moscow, Fizmatlit Publ., 2014. 408 p. (in Russ.).
  6. Carrera E., Fazzolari F.A., Cinefra M. Thermal stress analysis of composite beams, plates and shells: computational modelling and applications. Academic Press, 2016. 410 р.
  7. Starovoitov E.I., Leonenko D.V. Deformirovanie trekhsloynogo sterzhnya v temperaturnom pole [Deformation of three-layer beam in a temperature field]. Mechanics of machines, mechanisms and materials, 2013, no. 1(6), pp. 31–35 (in Russ.).
  8. Starovoitov E.I., Leonenko D.V., Tarlakovskiy D.V. Deformirovanie trekhsloynoy krugovoy tsilindricheskoy obolochki v temperaturnom pole [Deformation of three-layer circular cylindrical shell in the thermal field]. Engineering and automation problems, 2016, no. 1, pp. 91–97 (in Russ.).
  9. Starovoitov E.I., Leonenko D.V. Termouprugoe deformirovanie trekhsloynoy krugloy plastiny poverkhnostnymi nagruzkami razlichnykh form [Thermoelastic deformation of three-layer circular plate by surface loads of various forms]. Mechanics of machines, mechanisms and materials, 2018, no. 1(42), pp. 81–88 (in Russ.).
  10. Starovoitov E.I., Zhuravkov M.A., Leonenko D.V. Trekhsloynye sterzhni v termoradiatsionnykh polyakh [Three-layer bars in thermoradiation fields]. Minsk, Belaruskaya navuka Publ., 2017. 275 p. (in Russ.).
  11. Nestsiarovich А.V. Napryazhennoe sostoyanie krugovoy trekhsloynoy plastiny pri osesimmetrichnom nagruzhenii v svoey ploskosti [Stressed state of a circular three-layer plate under axisymmetric loading in its plane]. Mechanics. Researches and innovations, 2019, vol. 12, pp. 152–157 (in Russ.).
  12. Nestsiarovich А.V. Napryazheniya v krugovoy plastine tipa Timoshenko pri neosesimmetrichnom rastyazhenii-szhatii [Stresses in a Timoshenko-type circular plate under nonaxisymmetric tension-compression]. Mechanics. Researches and innovations, 2018, vol. 11, pp. 195–203 (in Russ.).
  13. Zakharchuk Yu.V. Deformirovanie krugovoy trekhsloynoy plastiny so szhimaemym zapolnitelem [Deformation of the circular three-layer plate with a compressible filler]. Problems of physics, mathematics and technics, 2017, vol. 33, no. 4, pp. 53–57 (in Russ.).
  14. Zelenaya A.S. Deformirovanie uprugoy trekhsloynoy pryamougolnoy plastiny so szhimaemym zapolnitelem [Deformation of an elastic three-layer rectangular plate with a compressible filler]. Proceedings of Francisk Scorina Gomel State University. Natural sciences, 2017, no. 6(105), pp. 89–95 (in Russ.).
  15. Starovoitov E.I., Yarovaya A.V., Leonenko D.V. Deformirovanie trekhsloynykh elementov konstruktsiy na uprugom osnovanii [Deformation of three-layer construction elements on the elastic foundation]. Moscow, Fizmatlit Publ., 2006. 379 p. (in Russ.).
  16. Starovoitov E.I., Leonenko D.V., Suleyman M. Deformirovanie lokalnymi nagruzkami kompozitnoy plastiny na uprugom osnovanii [Deformation of a composite plate on an elastic foundation by local loads]. Mekhanika kompozitnykh materialov, 2007, vol. 43, no. 1, pp. 109–120 (in Russ.).
  17. Starovoitov E.I., Leonenko D.V., Tarlakovskiy D.V. Rezonansnye kolebaniya krugovykh kompozitnykh plastin na uprugom osnovanii [Resonance vibrations of a circular composite plates on an elastic foundation]. Mekhanika kompozitnykh materialov, 2015, vol. 51, no. 5, pp. 793–806 (in Russ.).
  18. Starovoitov E.I., Leonenko D.V. Kolebaniya krugovykh kompozitnykh plastin na uprugom osnovanii pod deystviem lokalnykh nagruzok [Vibrations of circular composite plates on an elastic foundation under the action of local loads]. Mekhanika kompozitnykh materialov, 2016, vol. 52, no. 5, pp. 943–954 (in Russ.).
  19. Fwa T.F., Shi X.P., Tan S.A. Use of Pasternak foundation model in concrete pavement analysis. Journal of transportation engineering, 1996, vol. 122, no. 4, pp. 323–328.
  20. Dastjerdi S., Jabbarzadeh M. Nonlinear bending analysis of bilayer orthotropic graphene sheets resting on Winkler–Pasternak elastic foundation based on non-local continuum mechanics. Composites Part B: Engineering, 2016, vol. 87, pp. 161–175.
  21. Arefi M., Allam M.N.M. Nonlinear responses of an arbitrary FGP circular plate resting on the Winkler-Pasternak foundation. Smart structures and systems, 2015, vol. 16, no. 1, pp. 81–100.
  22. Sobhy M. Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions. Composite Structures, 2013, vol. 99, pp. 76–87.
  23. Leonenko D.V. Kolebaniya krugovykh trekhsloynykh plastin na uprugom osnovanii Pasternaka [Vibrations of circular three-layer plates on Pasternak elastic foundation]. Ecological bulletin of research centers of the Black Sea Economic Cooperation, 2014, no. 1, pp. 59−63 (in Russ.).
  24. Li Q., et al. Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler–Pasternak elastic foundation. International journal of mechanical sciences, 2018, vol. 148, pp. 596–610.
  25. Prudko E.I. Sravnitelnyy analiz matematicheskikh modeley osnovaniya fundamentnykh plit [Comparative analysis of mathematical models of foundation slabs]. Bulletin of Prydniprovska state academy of civil engineering and architecture, 2012, no. 7, pp. 52–57 (in Russ.).
  26. Starovoitov E.I., Kozel A.G. Vliyanie zhestkosti osnovaniya Pasternaka na deformirovanie krugovoy trekhsloynoy plastiny [Influence of the stiffness of the Pasternak foundation on the deformation of a circular three-layer plate]. Engineering and automation problems, 2019, vol. 24, no.1, pp. 392–406 (in Russ.).
  27. Starovoitov E.I., Kozel A.G. Izgib uprugoy trekhsloynoy krugovoy plastiny na osnovanii Pasternaka [The bending of an elastic circular sandwich plate on the Pasternak foundation]. Mekhanika kompozitsionnykh materialov i konstruktsii, 2018, vol. 24, no.1, pp. 392–406 (in Russ.).
  28. Kozel A.G. Deformirovannoe sostoyanie trekhsloynoy krugovoy plastiny, svyazannoy s osnovaniem Pasternaka [Strain state of three-layer circular plate connected to Pasternak foundation]. Matematicheskoe modelirovanie, kompyuternyy i naturnyy eksperiment v estestvennykh naukakh, 2018, no. 1, pp. 24–33 (in Russ.).
  29. Kozel A.G. Vliyanie sdvigovoy zhestkosti osnovaniya na napryazhennoe sostoyanie sendvich-plastiny [Influence of shear strong pastner basis on the stressed state of the sandwich plate]. Fundamental and applied problems of technics and technology, 2018, no. 6(332), pp. 25–35 (in Russ.).
  30. Ukhov S.B., et al. Mekhanika gruntov, osnovaniya i fundamenty [Soil mechanics, foundations and foundations]. Moscow, ASV Publ., 1994. 527 p. (in Russ.).
  31. Pasternak P.L. Osnovy novogo metoda rascheta fundamentov na uprugom osnovanii pri pomoshchi dvukh koeffitsientov posteli [Fundamentals of a new method of elastic foundation analysis by means of two-constants]. Moscow, Gosstroyizdat Publ., 1954. 55 p. (in Russ.).
  32. Vlasov V.Z., Leontev N.N. Balki, plity, obolochki na uprugom osnovanii [Beams, slabs, shells on an elastic foundation]. Moscow, Fizmatlit Publ., 1960. 491 p. (in Russ.).
  33. Idimeshev S.V. Raschet napryazhenno-deformirovannogo sostoyaniya izotropnykh pryamougolnykh plastin na uprugom osnovanii [Calculation of the stress-strain state of isotropic rectangular plates on an elastic foundation]. Izvestiya of Altai State University, 2014, pp. 53–56 (in Russ.).
  34. Tratsevskaya E.Yu. Dinamicheskaya neustoychivost kvazitiksotoropnykh morennykh gruntov [Dynamic instability of quasi-thixotropic moraine soils]. Lithosphere, 2017, no. 1(46), pp. 107–111 (in Russ.).