MOHAMMED S.A.A., Postgraduate Student, Belarusian National Technical University, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.
MELNIKOVA G.D., Junior Researcher, A.V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus, Minsk, Republic of Belarus
MAKHANIOK A.A., Cand. Phys.-Math. Sc., Senior Researcher, A.V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.
CHIZHIK S.A., Academician of the NAS of Belarus, Dr. Techn. Sc., Professor, First Deputy Chairman of the Presidium of the NAS of Belarus, Presidium of the NAS of Belarus, Minsk, Republic of Belarus

In the section BIOMECHANICS
Year 2015 Issue 2 Pages 80-84
Type of article RAR Index UDK 53.088.3 Index BBK  
Abstract In this article some methodological questions probe force spectroscopy at nanoindentation elastomeric materials discuss. They associated with the choice of the contact point and sliding the probe over the surface of the test material. An alternative method for choice of the contact point, in which the depth of probe's penetration into the sample becomes zero when using the model of Johnson-Kendall-Roberts proposes. It has been established that this point is located to the point of maximum adhesion force. According to nanoindentation data of erythrocyte by silicon probe with a radius of curvature of 60 nm and stiffness console 3 N/m is shown that the proposed version of the choice of the contact point provides a smaller variance the modulus of elasticity and access to a constant value of modulus of elasticity in the depth of penetration of 5-15 nm.
Keywords nanoindentation, young's modulus, contact point, Hertzian model, Johnson-Kendall-Roberts model, force spectroscopy
  You can access full text version of the article
  • Gupta S., Carrillo F., Li Ch., Pruitt L., Puttlitz Ch. Adhesive forces significantly affect elastic modulus determination of soft polymeric materials in nanoindentation. Materials Letters, 2002, vol. 61, no. 2, pp. 448-451.
  • Huang Y., Zhang F., Hwang K.C., Nix W.D., Pharr G.M., Feng G. A model of size effects in nanoindentation. J. Mech. Phys. Solids, 2006, vol. 54, pp. 1668-1686.
  • Doerner M.F., Nix W.D. A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res., 1986, vol. 1, no. 4. pp. 601-609.
  • Field J., Swain M.V. A simple predictive model for spherical indentation. J. Mater. Res., 1993, vol. 8, no. 2, pp. 297-306.
  • Gao H., Chiu C.H., Lee J. Elastic contact versus indentation modelling of multilayered materials. Int. J Solids Structures, 1992, vol. 29, pp. 2471-2492.
  • Golovin Yu.I. Nanoindentirovanie i mehanicheskie svojstva tverdyh tel v submikroob'emah, tonkih pripoverhnostnyh slojah i plenkah (Obzor) [Nanoindentation and mechanical properties of hard bodies in submicrovolumes, thin subsurface layers and films (Scope)]. Fizika tverdogo tela [Physics of hard bodies], 2008, vol. 50, no. 12, pp. 2113-2142.
  • Makushkin A.P. Naprjazhenno-deformirovannoe sostojanie uprugogo sloja pri vnedrenii v nego sfericheskogo indentora. 1. Opredelenie kontaktnogo davlenija [Stress-strain state of the elastic layer at the implementation by a spherical indenter. 1. Determination of the contact pressure]. Trenie i iznos [Friction and wear], 1990, vol. 11, no. 3, pp. 423-434.
  • Torskaya E.V., Goryacheva I.G., Chizhik S.A., Syroezhkin S.V. Opredelenie tolshhiny uprugogo sloja na tverdoj podlozhke metodom staticheskoj silovoj spektroskopii. [Determination of the thickness of the elastic layer on a solid substrate by static force spectroscopy]. Trudy VII Mezhdunarodnogo seminara "Metodologicheskie aspekty skanirujushhej zondovoj mikroskopii" 1-3 nojabrja 2006 Minsk" [Proc. of the VII International Seminar "Methodological aspects of scanning probe microscopy"]. Minsk, 2006, pp. 241-245.
  • Gerberich W.W., Tymiak N.I., Grunian J.C., Horstemeyer M.F., Baskes M.I. Interpretations of indentation size effects. J. Appl. Mech., 2002, vol. 69. pp. 433-442.
  • Rashid K., AlRub A. Prediction of micro and nanoindentation size effect from conical or pyramidal indentation. Mechanics of Materials, 2007, vol. 39, pp. 787-802.
  • Mencik J. Uncertainties and Errors in Nanoindentation, Nanoindentation in Materials Science, ISBN: 978-953-51-0802-3, InTech, DOI: 10.5772/50002. 2012. Available at: http:// www.intechopen.com/books/nanoindentation-in-materials-science/uncertainties-and-errors-in-nanoindentation.
  • Johnson K.L., Kendall K., Roberts A.D. Surface energy and the contact of elastic solids. Proc. Roy. Soc. London A., 1971, vol. 324, pp. 301-313.
  • Mohammed Salem A.A., Melnikova G.B., Makhaniok A.A., Chizhik S.A. Novye sposoby obrabotki rezul'tatov nanoindentirovanija metodom atomno-silovoj mikroskopii. [New ways of processing the results nanoindentation by atomic force microscopy]. Nauka i tehnika [Science and Technology], 2015, no. 1, pp. 53-60.