Smart Search 



Title of the article

SYNTHESIS OF THE NANOCOMPOSITE BASED ON IMPACT DIAMONDS AND SILICON CARBIDE UNDER CONDITIONS OF HIGH PRESSURE AND TEMPERATURE

Authors

VITYAZ Petr A., D. Sc. in Eng., Prof., Academician of the NAS of Belarus, Head of the Apparatus of the NAS of Belarus, Presidium of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

SENYUT Vladimir T., Ph. D. in Eng., Leading Researcher, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

ZHORNIK Viktor I., D. Sc. in Eng., Prof., Head of the Department of Mechanical Engineering and Metallurgy — Head of the Laboratory of Nanostructured and Superhard Materials, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

VALKOVICH Igor V., Researcher, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

KOVALIOVA Svetlana A., Senior Researcher, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

MOSUNOV Evgeniy I., Senior Researcher, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

AFANASYEV Valentin P., D. Sc. in Geology and Mineralogy, Chief Researcher of the Laboratory of Lithospheric Mantle and Diamond Deposits, V.S. Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the RAS, Novosibirsk, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section MECHANICAL ENGINEERING MATERIALS AND TECHNOLOGIES
Year 2020 Issue 4 Pages 43–51
Type of article RAR Index UDK 539.2:658.562 Index BBK  
DOI https://doi.org/10.46864/1995-0470-2020-4-53-43-51
Abstract The article studies the structure, phase composition and physicomechanical characteristics of the nanocomposite based on impact diamonds. It is shown that the additions of a binder based on SiC and Si lead to reduction of the defectiveness of the nanocomposite and increase in the uniformity of its structure compared to the material without additives. Moreover, increase in the binder content also leads to the inversion of the structure type of the nanocomposite from polycrystalline to matrix. It is established that the addition of amorphous carbon black and boron affects the refinement of the nanocomposite matrix structure due to the formation of secondary finedispersed nanostructured SiC and boron carbide. Preliminary mechanical activation of the reaction mixture leads to structural changes in the synthesized material in comparison with the material obtained without the use of mechanical activation. In this case, the hardness of the samples obtained under comparable synthesis modes increases, which is associated both with the formation of a fine-grained structure of the material and with the phase transformation of lonsdaleite to diamond. An analysis of the microhardness and heat resistance of the obtained samples makes it possible to conclude that the achieved level of physicomechanical parameters of the diamond nanocomposite allows it to be used in a stone-processing tool for treating medium hard rocks.
Keywords

nanocomposite, synthesis, impact diamonds, high pressure and temperature, silicon carbide, mechanical activation

  You can access full text version of the article.
Bibliography
  1. Bogatyreva G.P., et al. Instrumenty iz sverkhtverdykh materialov [Tools made of superhard materials]. Moscow, Mashinostroenie Publ., 2014. 607 p. (in Russ.).
  2. Vityaz P.A., Senyut V.T., Afanasyev V.P. Almaznye i uglerodsoderzhashchie kompositsionnye materialy i pokrytiya: poluchenie, svoystva, primenenie [Diamond and carbon-containing composite materials and coatings: production, properties, application]. Materialy 2 Mezhdunarodnoy konferentsii molodykh uchenykh, rabotayushchikh v oblasti uglerodnykh materialov [Proc. 2nd International conference of young scientists working in the field of carbon materials]. Moscow, Troitsk, 2019, pp. 74–75 (in Russ.).
  3. Afanasyev V.P., Pokhilenko N.P. Popigayskie impaktnye almazy: novoe rossiyskoe syre dlya sushchestvuyushchikh i budushchikh tekhnologiy [Popigay impact diamonds: new Russian raw materials for existing and future technologies]. Innovatics and expert examination, 2013, iss. 1(10), pp. 8–15 (in Russ.).
  4. Senyut V.T., Zhornik V.I., Valkovich I.V., Parnitsky A.M., Kovaliova S.A., Mosunov E.I., Markova L.V., Gamzeleva T.V. Poluchenie metodom termobaricheskogo spekaniya kompozitov na osnove almaza i KNB, modifitsirovannykh Si i SiC [Obtaining by the method of thermobaric sintering composites based on diamond and CBN modified with Si and SiC]. Powder Metallurgy, 2015, iss. 38, pp. 142–150 (in Russ.).
  5. Zhornik V.I., Parnitsky A.M., Senyut V.T. Modelnye predstavleniya protsessa strukturoobrazovaniya polikristallicheskogo sverkhtverdogo materiala s bimodalnoy strukturoy na osnove modifitsirovannykh almaznykh poroshkov [Model representations of the process of structure formation of polycrystalline superhard material with a bimodal structure based on modified diamond powders]. Mechanics of machines, mechanisms and materials, 2018, no. 3(44), pp. 83–91 (in Russ.).
  6. Senyut V.T., Vityaz P.A., Valkovich I.V., Parnitsky A.M., Rzhetsky V.A. Synthesis of nanostructured composite material based on nanodiamonds modified by silicon. Materials today: proceedings, 2018, vol. 5, iss. 12, part 3, pp. 26018–26024.
  7. Ilyushchenko A.F., Osipov V.A., Zvonarev E.V., Vitko Zh.A., Babura D.V. Vliyanie armiruyushchikh dobavok i temperatury na strukturu i nekotorye svoystva reaktsionno-svyazannoy keramiki na osnove karbida kremniya [Influence of reinforcing agents and siliconization temperature on the structure and certain properties of reaction-bonded ceramics based on silicon carbide]. Powder Metallurgy, 2015, iss. 38, pp. 132–141 (in Russ.).
  8. Ilyushchenko A.F., Mironovich G.A., Osipov V.A., Zvonarev E.V. Sostoyanie i perspektivy rabot po karbidokremnievoy keramike v Institute poroshkovoy metallurgii [State and prospects of work on silicon carbide ceramics at the Institute of Powder Metallurgy]. Powder metallurgy in Belarus: challenges of time, 2017, pp. 193–200 (in Russ.).
  9. Vityaz P.A., Senyut V.T., Kheifetz M.L. Sintez polikristallicheskikh sverkhtverdykh materialov iz modifitsirovannykh nanoalmazov [Synthesis of polycrystalline superhard materials from modified nanodiamonds]. Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 2016, no. 3, pp. 5–10 (in Russ.).
  10. Berlin Yu.Ya., Sychev Yu.I., Shalaev I.Ya. Obrabotka stroitelnogo dekorativnogo kamnya [Processing of construction and decorative stone]. Leningrad, Stroyizdat Publ., 1979. 232 p. (in Russ.).