Smart Search 



Title of the article DETERMINATION OF THE EFFECTIVE THICKNESS OF HARDENED LAYER OF CARBURIZED GEARS
Authors

RUDENKO Sergei P., Ph. D. in Eng., Leading Researcher of the Laboratory of Metallurgy in Mechanical Engineering, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

VALKO Aleksandr L., Senior Researcher of the Laboratory of Metallurgy in Mechanical Engineering, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">valсThis email address is being protected from spambots. You need JavaScript enabled to view it.

SANDOMIRSKI Sergei G., D. Sc. in Eng., Assoc. Prof., Head of the Laboratory of Metallurgy in Mechanical Engineering, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section MECHANICAL ENGINEERING MATERIALS AND TECHNOLOGIES
Year 2022
Issue 3(60)
Pages 61–67
Type of article RAR
Index UDK 669.15:620.178.1
DOI https://doi.org/10.46864/1995-0470-2022-3-60-61-67
Abstract The methods are considered for determining the effective thickness of the hardened layer of metal parts listed in the standards STB 2307-2013 and STB ISO 18203-2019. The ambiguity of interpretation of the concept of effective thickness hэф of the hardened layer up to the half-transition zone is established for control of gears after the chemical heat treatment: carburizing and hardening. In practice, hэф is determined by the Vickers hardness distribution under the relevant load. In accordance with the standard ASTM E140-07, the Vickers hardness value of 50 HRC represents the Vickers hardness of 513 HV for non-austenitic structural steels when tested at 294.2 N. When testing Vickers hardness at lower loads, conversion tables or dependencies must be used. It has been shown that such measurements are more inaccurate at lower loads. To eliminate errors and increase accuracy of determining hэф of diffusion thickness of gear wheels after chemical-hardening, techniques are compared to determine hэф three: metallographic, mechanical and chemical. The Vickers hardness values determined during tests of structural non-austenitic steels with different loads correspond to the hardness value of 50 HRC. The values obtained can be applied to determine hэф of diffusion layers of surface-hardened parts corresponding to the half-transition zone.
Keywords Vickers method, hardness test, analytical dependence, surface layer, half-transition zone, effective thickness
  You can access full text version of the article.
Bibliography
  1. Zinchenko V.M. Inzheneriya poverkhnosti zubchatykh koles metodami khimiko-termicheskoy obrabotki [Surface engineering of gears by methods of chemical-thermal treatment]. Moscow, Moskovskiy gosudarstvennyy tekhnicheskiy universitet im. Baumana Publ., 2001. 303 p. (in Russ).
  2. Susin A.A. Khimiko-termicheskoe uprochnenie vysokonapryazhennykh detaley [Chemical heat reinforcement of heavily stressed components]. Minsk, Belorusskaya nauka Publ., 1999. 175 p. (in Russ).
  3. Kozlovskiy I.S. Khimiko-termicheskaya obrabotka shesteren [Chemical-thermal treatment of gears]. Moscow, Mashinostroenie Publ., 1970. 232 p. (in Russ).
  4. Alekseev V.I., Ananev V.M., Bulygina M.M. Aviatsionnye zubchatye peredachi i reduktory [Aircraft gears and gearboxes]. Moscow, Mashinostroenie Publ., 1981. 374 p. (in Russ).
  5. Bernst R., et al. Technologie der Waermebehandlung von Stahl. Leipzig, VEB Deutscher Verlag fuer Grundstoffindustrie, 1976.
  6. ASTM E140-07. Standard hardness conversion tables for metals relationship among Brinell hardness, Vickers hardness, Rockwell hardness, superficial hardness, Knoop hardness, and scleroscope hardness. 2007. 21 p.
  7. Standard of Belarus STB ISO 18203–2019. Stal. Izmerenie tolshchiny poverkhnostno-uprochnennogo sloya [Steel. Measuring the thickness of the surface-hardened layer]. Minsk, Gosstandart Publ., 2019. 16 p. (in Russ).
  8. Standard of Belarus STB 2307–2013. Poverkhnostno-uprochnennye sloi metallicheskikh detaley. Metody izmereniya tolshchiny [Surface-strengthened layers of metal parts. Thickness measuring methods]. Minsk, Gosstandart Publ., 2013. 16 p. (in Russ).
  9. Tesker E.I. Sovremennye metody rascheta i povysheniya nesushchey sposobnosti poverkhnostno uprochnennykh zubchatykh peredach transmissiy i privodov [Modern methods of calculating and increasing the load-bearing capacity of surface-hardened gears of transmissions and drives]. Moscow, Mashinostroenie Publ., 2011. 434 p. (in Russ).
  10. Rudenko S.P., Sandomirski S.G. Determinirovannaya analiticheskaya model soprotivleniya glubinnoy kontaktnoy ustalosti napryazhennogo materiala [Deterministic analytical model of resistance to deep contact fatigue of a stressed material]. Mechanics of machines, mechanisms and materials, 2021, no. 3, pp. 52–60 (in Russ).
  11. Rudenko S.P. Issledovanie soprotivleniya kontaktnoy ustalosti poverkhnostno uprochnennykh zubchatykh koles [Study of contact fatigue resistance of surface-hardened toothed wheels]. Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 2009, no. 4, pp. 48–53 (in Russ).
  12. Rudenko S.P., Valko A.L. Kontaktnaya ustalost zubchatykh koles transmissiy energonasyshchennykh mashin [Contact fatigue of power transmission gears of energy saturated machines]. Minsk, Belorusskaya nauka Publ., 2014. 126 p. (in Russ).
  13. Fudzita K., Yokhida A. Vliyanie glubiny tsementovannogo sloya i otnositelnogo radiusa krivizny na dolgovechnost pri kontaktnoy ustalosti tsementovannogo rolika iz khromomolibdenovoy stali [Influence of carburized layer depth and relative radius of curvature on the contact fatigue life of a cemented chromium-molybdenum steel roller]. Trudy amerikanskogo obshchestva inzhenerov-mekhanikov, 1981, vol. 103, no. 2, pp. 115–124 (in Russ.).
  14. State Standard R ISO 6507-1-2007. Materialy i splavy. Izmerenie tverdosti po Vikkersu. Chast 1. Metod izmereniya [Materials and alloys. Measurement of Vickers hardness. Part 1. Measurement method]. Moscow, Standartinform Publ., 2008. 15 p. (in Russ).
  15. Rudenko S.P., Valko A.L., Sandomirski S.G. Povyshenie tochnosti izmereniya tverdosti poverkhnostno uprochnennykh stalnykh izdeliy [Improving the accuracy of hardness measurement of surface-hardened steel products]. Stal, 2022, no. 6, pp. 38–42 (in Russ.).