Title of the article

THE INFLUENCE OF SHEAR ENERGY AND ROTARY INERTIA TO BEAM ELEMENTS OSCILLATION

Authors

Bosacov S.V., the Belarusian National Technical University, Minsk, the Republik of Belarus

Shchetsko М.S., Republican Unitary Scientific-Research Enterprise for Construction “Institute BelNIIS”, Minsk, the Republik of Belarus

In the section MECHANICS OF DEFORMED SOLIDS
Year 2008 Issue 3 Pages 63-66
Type of article RAR Index UDK 624.04 Index BBK  
Abstract

The influence of correction for shear and rotary inertia in the case of free oscillating physically-nonlinear beams is analysed in the paper. The solution obtained via energetic methods with the usage of "moment-curvature" diagram. Various types of materials and transversal shapes are studied. The influence of nonlinearity to the natural frequency is shown and analysed. Obtained solutions can be used in the calculations of building structures.

Keywords

shear and rotary inertia, free oscillating physically-nonlinear beams, "moment-curvature" diagram

  You can access full text
Bibliography
  • Bosakov S.V., Shchetko N.S. Ob odnom svojstve zavisimosti «moment-krivizna» dlja balok i ego ispol'zovanii v inzhenernyh raschetah [On a property of dependence “moment – curvature” for beams and its use in engineering calculations]. Stroit. nauka i tehnika [Build. science and technology], 2006, no. 1, pp. 58-61.
  • Snitko N.K. Metody rascheta sooruzhenij na vibraciju i udar [Methods for calculating the vibration and brunt facilities]. Leningrad, Moscow, Gos. Izd-vo lit-ry po str-vu i arhitekture, 1953. 288 p.
  • Stratton, J.V. Teorija zvuka [Sound Theory]. Moscow, Gos. Izd-vo tehniko-teoretich. lit-ry, 1955, vol. 1. 504 p.
  • Timoshenko, S.P. Staticheskie i dinamicheskie problemy teorii uprugosti [Static and dynamic problems of elasticity]. Kiev, Nauk. dumka, 1975. 564 p.
  • Timoshenko S.P. Prochnost' i kolebanija jelementov konstrukcij [The strength and vibrations of structural elements]. Moscow, Nauka, 1975. 704 p.
  • Kiselev V.A. Stroitel'naja mehanika. Spec. kurs «Dinamika i ustojchivost' sooruzhenij» [Structural mechanics. Specialist. course “Dynamics and Stability of Structures”]. Moscow, Mir, 1980. 548 p.
  • Panovko Ya.G. Osnovy prikladnoj teorii kolebanij i udara [Fundamentals of applied theory of vibrations and shock]. Leningrad, Politehnika, 1990. 271 p.
  • Seon M. Han, Benaroya Haym, Wei Timothy Dynamics of transversely vibrating beams using four engineering theories. Mechanical and Aerospace Engineering, Rutgers, the State University of New Jersey, Piscataway, 1999. Available at: http://csxe.rutgers.edu/research/vibration/51.pdf/ (accessed 14 February 2008).
  • Stephen N.G., Puchegger S. On the valid frequency range of Timoshenko beam theory. Journal of Sound and Vibration, 2006, 1082-1087. Available at: http:// eprints.soton.ac.uk/39249/ (accessed 14 February 2008).
  • Selcuk Saatci. Behaviour and modeling of reinforced concrete structures subjected to impact loads. Ph.D. Dissertation. University of Toronto, Graduate Department of Civil Engineering, Canada, 2007. Available at: http:// www.proquest.com/ (accessed 25 January 2008).
  • Maeck J. Damage Assessment of Civil Engineering Structures by Vibration Monitoring. Ph.D. Dissertation. Department of Civil Engineering, K.U.Leuven, Belgium, 2003. Available at: http://www.proquest.com/ (accessed 19 June 2007).

Title of the article

TO INVESTIGATE CALCULATION OF PARAMETRIC VIBRATIONS OF VISO BAR IN MEDIUM WITH REGARD TO DAMAGEABILITY

Authors

Pirmamedov I.T., the Institute of Mathematics and Mechanics of NAS of Azerbaijan, Baku

In the section MECHANICS OF DEFORMED SOLIDS
Year 2008 Issue 3 Pages 60-62
Type of article RAR Index UDK   Index BBK  
Abstract

In the paper on the basis of the theory of damageability consider parametric vibrations of a linear inhomogeneous in thickness bar with regard do physical and geometrical non-linearity, buried in viso medium. The problem is solbed by variational method. Characteristic curbes of dependend of applied force on frequency are constructed.

Keywords

parametric vibrations, thickness bar, frequency

  You can access full text
Bibliography
  • Alizade A.N., Amenzade R.Yu. Variacionnyj princip nelinejno–vjazkouprugosti s uchetom geometricheskoj nelinejnosti [The variational principle of nonlinear viscoelastic considering geometric nonlinearity]. Dokl. Dokl. AN SSSR [Proceedings of USSR Academy of Sciences],1976, no. 6, pp. 1303-1305.
  • Suvorova Yu.V., Akhundov M.B. Dlitel'noe razrushenie izotropnoj sredy v uslovijah slozhnogo naprjazhennogo sostojanija [Prolonged disruption of an isotropic medium in a complex state of stress]. Mashinostroenie,1986, no. 4, pp. 40-46.

Title of the article

THE BENDING OF THREE-LAYER ELASTIC CORE WITH VARIABLE STIFF SHELL

Authors

Pleskachevsky Yu.M., The A.V. Luikov Heat and Mass Transfer Institute of NAS of Belarus, Minsk, the Republik of Belarus

Starovoytova E.E., the Belarusian State University of Transport, Gomel, the Republik of Belarus

In the section MECHANICS OF DEFORMED SOLIDS
Year 2008 Issue 3 Pages 52-55
Type of article RAR Index UDK 539.3 Index BBK  
Abstract

The bending of three-layer elastic core with variable thickness of one of two stiff shells is considered. To describe kinematics of asymmetrical over thickness pack of the core the hypotheses of the broken normal are accepted. A system of equilibrium equations and its general analytical solution in terms of displacements haves been derived.

Keywords

three-layer elastic core, asymmetrical over thickness pack

  You can access full text
Bibliography
  • Starovoytov E.I. Vjazkouprugoplasticheskie sloistye plastiny i obolochki [Viscoelasticoplastic layered plates and shells]. Gomel, BelSUT, 2002. 344 p.
  • Gorshkov A.G., Starovoytov E.I., Yarovaya A.V. Mehanika sloistyh vjazkouprugoplasticheskih jelementov konstrukcij [Mechanics of viscoelasticoplastic layered elements of designs]. Moscow, FIZMATLIT, 2005. 576 p.
  • Pleskachevskiy Y.M., Starovoytov E.I., Yarovaya A.V. Deformirovanie metallopolimernyh sistem [Deformation of Metal-Polymer Systems]. Minsk, Bel. navuka. 2004. 386 p.
  • Pleskachevskiy Y.M., Starovoytov E.I., Yarovaya A.V. Dinamika metallopolimernyh sistem [Dynamics of Metal-Polymer Systems]. Minsk, Bel. navuka. 2004. 342 p.
  • Starovoytov E.I., Yarovaya A.V., Leonenko D.V. Lokal'nye i impul'snye nagruzhenija trehslojnyh jelementov konstrukcij [Local and pulse loading of sandwich structural elements] Gomel, BelGUT, 2003. 367 p.
  • Zhenqiang Cheng, Jemah A.K., Williams F.W. Theory for multilayered anisotropic plates with weakened interfaces. J. Appl. Mech., Trans. ASME, 1996, no. 4, pp. 1019-1026.
  • Ebsioglu J.K. On the theory on sandwich panels in the reference state.  Internal. J. Eng-ng Sci., 1996, no. 6, pp. 166-194.
  • Starovoytova E.E. Uravnenija ravnovesija uprugogo trehslojnogo sterzhnja s nereguljarnoj granicej [The equilibrium equations of the elastic three-layer bar with irregular boundary]. Dinamicheskie i tehnologicheskie problemy mehaniki konstrukcij i sploshnyh sred: tez. dokl. HIII Mezhdunar. Simpoz. [Dynamic and technological problems in mechanics of structures and continuous medium: theses of XIII Intern. Sympos.], Moscow, Izd-vo MAI, 2007, pp. 234-235.

Title of the article

MOLECULAR-STATISTICAL THEORY OF ELASTIC AND VISCOUS PROPERTIES OF RUBBER-LIKE MATERIALS WITH ORIENTATIONAL ORDER

Authors

Nemtsov V.B., Belarusian State Technological University, Minsk, the Republik of Belarus

Kamluk A.N., Belarusian State Technological University, Minsk, the Republik of Belarus

Shirko A.V., Belarusian State Technological University, Minsk, the Republik of Belarus

In the section MECHANICS OF DEFORMED SOLIDS
Year 2008 Issue 3 Pages 56-59
Type of article RAR Index UDK 536.258 Index BBK  
Abstract

The paper contains the results of investigation of elastic and viscous properties of rubber-like materials with orientational order. The elastic properties are described with the help of the introduced microscopic Cauchy-Green tensor. The obtained results describe the nonlinear elastic properties well and predict the existence of the soft modes. In the theory of viscous properties the approved model for the time correlation function of the microscopic stress tensor is used.

Keywords

elastic properties, rubber-like materials, time correlation function

  You can access full text
Bibliography
  • Chernykh K.F. Nelinejnaja teorija uprugosti v mashinostroitel'nyh raschetah [Nonlinear theory of elasticity in engineering calculations]. Leningrad, Mashinostroenie, 1986. 336 p.
  • Warner M., Terentyev E.M. Liquid Crystal Elastomers. N.Y. Oxford, Claredon press, 2003. 407 p.
  • Nemtsov V.B. Uprugost' nematicheskih jelastomerov [The elasticity of nematic elastomers]. Teoretich. i prikl. mehanika [Theoretical and Applied Mechanics], 2007, vol. 22, pp. 11-17.
  • Landau L.D., Lifshitz E.M. Statisticheskaja fizika [Statistical physics]. Moscow, Nauka, 1976. 584 p.
  • Treloar L.R. The mechanics of rubber elasticity. Proc. R. Soc. Lond. A., 1976, vol. 351, pp. 301-330.
  • Kuzuu N., Doi M. Constitutive Equation for Nematic Liquid Crystals under Week Velocity Gradient Derived from a Molecular Kinetic Equation. J.Phys. Soc. Ipn., 1983, vol. 52, pp. 3486-3494.
  • Kondratenko A.V., Nemtsov V.B. Statisticheskoe vychislenie vjazkih svojstv nematicheskih zhidkih kristallov s pomoshh'ju kineticheskogo uravnenija dlja tenzornogo parametra porjadka [Statistical calculation of viscous properties of nematic liquid crystals with the help of the kinetic equation for the tensor order parameter]. IFZh. [Engineering and Physics Journal], 2001, vol. 74, no. 3, pp. 56-62.
  • Tankeshkar, K., Pathak K.N., Ranganathan S.J. Longitudinal and bulk viscosities of Lennard Jones fluids. J. Phys.: Condensed Matter, 1996, vol. 8, pp. 10847-10861.
  • Nemtsov V.B. Breathing Sphere Model for Description of the Vibration Energy Transfer in a Viscoelastic Medium. Nonlinear Phenomena in Complex Systems, 2005, vol. 8, pp. 134-147.

Title of the article

ON BIFURCATION OF THIN CORRUGATED SHELL WITH AN ELASTIC FILLER UNDER ACTION OF NON-UNIFORM HYDROSTATIC PRESSURE

Authors

Nikonova T.V., the Vitebsk State Technological University, Vitebsk, the Republik of Belarus

Kuntsevich S.P., the Vitebsk State Technological University, Vitebsk, the Republik of Belarus

Mikhasev G.I., the Belarusian State University, Minsk, the Republik of Belarus

In the section MECHANICS OF DEFORMED SOLIDS
Year 2008 Issue 3 Pages 48-51
Type of article RAR Index UDK 539.3:534.1 Index BBK  
Abstract

The problem of buckling of a thin corrugated shell with elastic filler under action of the non-uniform hydrostatic pressure is considered. The influence of the elastic filler is taken into account as the additional pressure within the framework of Winkler's model. The semi-moment equations of the thin elastic shell theory are assumed as the governing ones. The rigid clamped conditions are considered at the edges of the shell. Assuming that the hydrostatic pressure depends upon the circumferential co-ordinate, solutions of the governing equations are constructed in the form of functions decaying far from some generator on the shell surface. Using the complex WKB-method, the boundary-value problem is reduced to the sequence of the one-dimensional boundary-value problems. The equation for the critical normal pressure has been obtained. The influence of parameters of corrugation of the shell on the critical pressure has been analyzed.

Keywords

buckling, thin corrugated shell, hydrostatic pressure, elastic filler, complex WKB-method

  You can access full text
Bibliography
  • Volmir A.S. Ustojchivost' deformiruemyh system [The stability of deformable systems]. Moscow, Nauka, 1967. 984 p.
  • Grigolyuk E.I. Kabanov, V.V. Ustojchivost' obolochek [Shells resistance], Moscow, Nauka, 1978. 360 p.
  • Tovstik P.E. Ustojchivost' tonkih obolochek [The stability of thin shells]. Moscow, Nauka, 1995. 320 p.
  • Ilgamov M.A., Ivanov V.A., Gulin B.V. Prochnost', ustojchivost' i dinamika obolochek s uprugim zapolnitelem [The strength, stability and dynamics of shells with elastic filler]. Moscow, Nauka, 1977. 332 p.
  • Tovstik P.E. Lokal'naja ustojchivost' plastin i pologih obolochek na uprugom osnovanii [Local stability of plates and shallow shells on an elastic foundation]. Izv. RAN. Mehanika tverdogo tela [News of Russian Academy of Sciences. Mechanics of Solids], 2005, no. 1, pp. 147-160.
  • Mikhasev G.I., Nikonova T.V. Ustojchivost' tonkih gofrirovannyh cilindricheskih obolochek, lezhashhih na uprugom osnovanii pod dejstviem odnorodnogo gidrostaticheskogo davlenija [Stability of thin corrugated cylindrical shells lying on an elastic foundation under the action of a uniform hydrostatic pressure]. Vestn. Viteb. gos. Un-ta [Bulletin of Vitebsk State University], 2007, no. 3, pp. 112-117.
  • Korbut B.A., Nagornyy Yu.N. Ob odnoj modeli zapolnitelja v zadachah ustojchivosti cilindricheskih obolochek [On an aggregate models in problems of stability of cylindrical shells]. Izv. vuzov. Mashinostroenie [News of universities. Mechanical Engineering], 1971, no. 6, pp. 16-21.
  • Korenev B.G. Voprosy rascheta balok i plit na uprugom osnovanii [Issues of calculation of beams and plates on elastic foundation]. Moscow, Gosstrojizdat, 1954. 232 p.
  • Mikhasev G.I., Nikonova T.V. Ocenka usilij v tonkostennoj gofrirovannoj trube s uprugim zapolnitelem pod dejstviem peremennogo davlenija [Evaluation of efforts in thin-walled corrugated pipe with elastic filler under the influence of alternating pressure]. Ves. Nac. akad. navuk Belarusi. Ser. fiz.-tjeh.navuk [Bulletin of the NAS of Belarus. An edition of physical and engineering sciences], 2005, no. 4, pp. 55-60.