Название статьи | ФОРМИРОВАНИЕ ПРОФИЛЯ ПОВЕРХНОСТИ В УПРАВЛЯЕМЫХ ИМПУЛЬСНЫХ РЕЖИМАХ ЭЛЕКТРОЛИТНО-ПЛАЗМЕННОЙ ОБРАБОТКИ |
Авторы |
А.Ю. КОРОЛЁВ, канд. техн. наук, доц., заведующий научно-исследовательским сектором перспективных технологий, Научно-технологический парк БНТУ «Политехник», Минск, Республика Беларусь, Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.">Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. В.А. ТОМИЛО, д-р техн. наук, проф., заведующий кафедрой «Машины и технология обработки металлов давлением», Белорусский национальный технический университет, г. Минск, Республика Беларусь, Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.">Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. В.С. НИСС, канд. техн. наук, доц., заведующий инновационно-производственным центром медицинского оборудования и изделий, Филиал БНТУ «Научно-исследовательский политехнический институт», г. Минск, Республика Беларусь, Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.">Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. |
В рубрике | МАШИНОСТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ И ТЕХНОЛОГИИ |
Год | 2025 |
Номер журнала | 3(72) |
Страницы | 46–53 |
Тип статьи | Научная статья |
Индекс УДК | 621.9.047.7 |
Идентификатор DOI | https://doi.org/10.46864/1995-0470-2025-3-72-46-53 |
Аннотация |
Для повышения эффективности методов электролитно-плазменной обработки разработаны режимы, основанные на использовании управляемых импульсов. Режимы реализуются за счет чередования импульсов высокого напряжения, соответствующего электролитно-плазменной области, и бестоковых пауз между ними. В начальный момент включения импульса высокого напряжения действует электрохимический процесс (в стадии формирования парогазовой оболочки). Повышение эффективности импульсного процесса достигается за счет интенсивного съема металла при протекании электрохимического процесса и оптимизации продолжительности электролитно-плазменного процесса, при котором обеспечивается высокое качество поверхности. По результатам исследований установлено, что разработанный импульсный метод за счет совмещения преимуществ как электролитно-плазменного, так и электрохимического процессов обеспечивает формирование поверхности с более гладким и пологим профилем микронеровностей по сравнению с традиционной электролитно-плазменной обработкой на постоянном токе. Наличие электрохимической составляющей приводит к преимущественному растворению высоких выступов и интенсивному сглаживанию неровностей, что способствует снижению угла наклона профиля и уменьшению количества выступов на единицу длины (параметр HSC). Акцентированное растворение выступов в импульсном процессе, по сравнению с обработкой на постоянном токе, подтверждается динамикой изменения параметра Rsk, определяющего асимметричность профиля (преобладание выступов или впадин) — для импульсного режима параметр Rsk выше, что свидетельствует о более интенсивном сглаживании выступов. |
Ключевые слова | электролитно-плазменная обработка, импульсы, парогазовая оболочка, анодный процесс, плотность тока, параметры шероховатости |
![]() |
Полный текст статьи Вам доступен |
Список цитируемой литературы |
|
Название статьи | ОБОСНОВАНИЕ ПРИМЕНЕНИЯ МОДУЛЬНОЙ ПРУЖИННОЙ ТОРМОЗНОЙ СИСТЕМЫ |
Авторы |
Е.В. БЫКОВСКИЙ, инженер-конструктор, ЗАО «Струнные технологии», г. Минск, Республика Беларусь, Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.">Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. |
В рубрике | МАШИНОСТРОИТЕЛЬНЫЕ КОМПОНЕНТЫ |
Год | 2025 |
Номер журнала | 3(72) |
Страницы | 37–45 |
Тип статьи | Научная статья |
Индекс УДК | 62-592 |
Идентификатор DOI | https://doi.org/10.46864/1995-0470-2025-3-72-37-45 |
Аннотация |
В данной научно-теоретической работе представлена концепция модульной тормозной системы низкого давления для железнодорожного подвижного состава. Эта система предназначена для эффективного регулирования скорости движения и надежного удержания состава на месте в течение длительного времени. Проведен анализ существующих тормозных систем, используемых в современных грузопассажирских перевозках. Рассмотрено их историческое развитие, выявленные недостатки и современные подходы к модернизации, применяемые различными производителями. Разработанная тормозная система получила название «модульная тормозная система» (МТС). Она отличается использованием для создания тормозного нажатия мощной сжатой пружины, а ее поворотом достигается плавное изменение тормозной силы. Существенное преимущество МТС — работа при пониженном давлении. Это не только снижает интенсивность износа компрессорного оборудования, что приводит к уменьшению эксплуатационных расходов, но и способствует существенной экономии энергоресурсов, что полностью соответствует современным мировым тенденциям в области энергосбережения. Модульная конструкция системы обеспечивает возможность интеграции в существующие системы как грузового, так и пассажирского подвижного состава. При этом сохраняется важная функция автоматического срабатывания в случае несанкционированного расцепления вагонов, что гарантирует высокий уровень безопасности. |
Ключевые слова | модульная тормозная система, железнодорожный транспорт, тормозная система низкого давления, струнный транспорт, торможение, пружинный тормоз, рычажный механизм |
![]() |
Полный текст статьи Вам доступен |
Список цитируемой литературы |
|
Название статьи | МОДЕЛИРОВАНИЕ ЭЛЕМЕНТОВ КОНСТРУКЦИЙ ЖЕЛЕЗНОДОРОЖНОГО ПОДВИЖНОГО СОСТАВА, РАБОТАЮЩИХ В УСЛОВИЯХ ИНТЕНСИВНОГО ФРИКЦИОННОГО ВЗАИМОДЕЙСТВИЯ |
Авторы |
А.О. ШИМАНОВСКИЙ, д-р техн. наук, проф., заведующий кафедрой «Техническая физика и теоретическая механика», Белорусский государственный университет транспорта, г. Гомель, Республика Беларусь, Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.">Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. Е.Э. ГАЛАЙ, канд. техн. наук, доц., старший научный сотрудник отраслевой научно-исследовательской лаборатории «Тормозные системы подвижного состава», Белорусский государственный университет транспорта, г. Гомель, Республика Беларусь, Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.">Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. О.А. СУХАНОВА, старший преподаватель кафедры «Графика», Белорусский государственный университет транспорта, г. Гомель, Республика Беларусь, Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.">Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. И.И. КАПЛЮК, старший преподаватель кафедры «Транспортно-технологические машины и оборудование», Белорусский государственный университет транспорта, г. Гомель, Республика Беларусь, Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.">Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. |
В рубрике | КОМПЬЮТЕРНАЯ МЕХАНИКА |
Год | 2025 |
Номер журнала | 3(72) |
Страницы | 18–26 |
Тип статьи | Научная статья |
Индекс УДК | 629.4.015:004.94 |
Идентификатор DOI | https://doi.org/10.46864/1995-0470-2025-3-72-18-26 |
Аннотация |
Рассматриваются математические и компьютерные модели, которые могут быть использованы при анализе долговечности элементов тормозных систем железнодорожного подвижного состава и систем «токоприемник — контактный провод». Представлена теоретическая модель, позволяющая оценивать значения температур, возникающих в элементах конструкции колодочного тормоза при длительном торможении. Выполнен конечно-элементный анализ пластических деформаций, возникающих в деталях дискового тормоза при его включении. Разработана связанная конечно-элементная модель взаимодействия токосъемной вставки и контактного провода, позволяющая определять температуры и механические напряжения в них при перемещении транспортного средства. |
Ключевые слова | железнодорожный подвижной состав, контактное взаимодействие, трение, износ, напряженно-деформированное состояние, конечно-элементное моделирование |
![]() |
Полный текст статьи Вам доступен |
Список цитируемой литературы |
|
Название статьи | СИСТЕМА ПОЛУНАТУРНЫХ ИСПЫТАНИЙ КОМБИНИРОВАННЫХ ЭНЕРГОУСТАНОВОК АВТОМОБИЛЕЙ НА ОСНОВЕ АРХИТЕКТУРЫ COMPONENT-IN-THE-LOOP С ВИРТУАЛЬНОЙ ТРАНСМИССИЕЙ |
Авторы |
И.А. КУЛИКОВ, канд. техн. наук, ведущий инженер-исследователь, ФГУП «НАМИ», г. Москва, Российская Федерация, Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.">Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. И.А. ФИСЕНКО, канд. техн. наук, ведущий эксперт Экспертного совета, ФГУП «НАМИ», г. Москва, Российская Федерация, Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.">Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. |
В рубрике | МАШИНОСТРОИТЕЛЬНЫЕ КОМПОНЕНТЫ |
Год | 2025 |
Номер журнала | 3(72) |
Страницы | 27–36 |
Тип статьи | Научная статья |
Индекс УДК | 629.3 |
Идентификатор DOI | https://doi.org/10.46864/1995-0470-2025-3-72-27-36 |
Аннотация |
В статье предложена и верифицирована концепция системы типа Component-in-the-Loop (CiL), предназначенной для лабораторных виртуально-физических испытаний автомобильных комбинированных (гибридных) энергоустановок (КЭУ). Особенностью концепции является модульная архитектура с унифицированными способами взаимодействия между физической и виртуальной частями системы, а также между виртуальными компонентами. Основу виртуальной части CiL-системы составляет модель трансмиссии, тип которой может быть выбран в зависимости от схемы исследуемой энергоустановки. Взаимодействуя с установленными на стенде силовыми агрегатами посредством динамометров, модель согласует их нагрузочные режимы в соответствии с имитируемыми режимами функционирования КЭУ и движения автомобиля. Данный подход позволяет строить масштабируемые CiL-системы для энергоустановок с произвольным числом агрегатов. Верификация концепции выполнена посредством вычислительных экспериментов с математической моделью CiL-системы на основе КЭУ Toyota Hybrid System с двухпоточной бесступенчатой трансмиссией. Результаты моделирования показывают, что CiL-система адекватно воспроизводит работу КЭУ в заданных режимах движения автомобиля, а ее управляющая структура функционирует в соответствии с заложенными принципами и является устойчивой. |
Ключевые слова | виртуально-физические испытания, Component-in-the-Loop, комбинированные энергоустановки автомобилей, математическое моделирование, виртуальная трансмиссия, вычислительные эксперименты |
![]() |
Полный текст статьи Вам доступен |
Список цитируемой литературы |
|
Название статьи | ГИДРОДИНАМИЧЕСКИЕ И ТЕПЛОВЫЕ ПРОЦЕССЫ В ОХЛАДИТЕЛЕ МАСЛА СИСТЕМЫ СМАЗКИ ДИЗЕЛЬНЫХ ДВИГАТЕЛЕЙ: ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ |
Авторы |
И.А. ПОПОВ, чл.-корр. АН Республики Татарстан, д-р техн. наук, профессор кафедры теплотехники и энергетического машиностроения, заведующий лабораторией моделирования физико-технических процессов, Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ, г. Казань, Республика Татарстан, Российская Федерация, Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.">Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. Ю.В. ЖУКОВА, канд. физ.-мат. наук, доц., ведущий научный сотрудник лаборатории турбулентности, Институт тепло- и массообмена имени А.В. Лыкова НАН Беларуси, г. Минск, Республика Беларусь, Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.">Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. А.Д. ЧОРНЫЙ, канд. физ.-мат. наук, доц., заведующий лабораторией турбулентности, Институт тепло- и массообмена имени А.В. Лыкова НАН Беларуси, г. Минск, Республика Беларусь, Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.">Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. Т.А. БАРАНОВА, старший научный сотрудник лаборатории турбулентности, Институт тепло- и массообмена имени А.В. Лыкова НАН Беларуси, г. Минск, Республика Беларусь, Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.">Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. И.Г. КУХАРЧУК, научный сотрудник лаборатории турбулентности, Институт тепло- и массообмена имени А.В. Лыкова НАН Беларуси, г. Минск, Республика Беларусь, Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.">Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. В.М. ГУРЕЕВ, д-р техн. наук, ведущий научный сотрудник лаборатории моделирования физико-технических процессов, Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ, г. Казань, Республика Татарстан, Российская Федерация, Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.">Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. В.М. МЕДВЕДЕВ, канд. техн. наук, доц., директор Института механизации и технического сервиса, Казанский государственный аграрный университет, г. Казань, Республика Татарстан, Российская Федерация, Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.">Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. И.А. ПОПОВ-младший, студент Института механизации и технического сервиса, Казанский государственный аграрный университет, г. Казань, Республика Татарстан, Российская Федерация, Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.">Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. |
В рубрике | КОМПЬЮТЕРНАЯ МЕХАНИКА |
Год | 2025 |
Номер журнала | 3(72) |
Страницы | 5–17 |
Тип статьи | Научная статья |
Индекс УДК | 621.522.4, 004.942 |
Идентификатор DOI | https://doi.org/10.46864/1995-0470-2025-3-72-5-17 |
Аннотация |
В настоящей статье представлены результаты, служащие методической основой при создании цифрового двойника маслоохладителя системы смазки дизельного двигателя. На первом этапе проведена декомпозиция маслоохладителя на отдельные узлы, а также созданы математическая и компьютерная модели узлов маслоохладителя системы смазки двигателя. На втором этапе проведено численное моделирование гидродинамических и тепловых процессов при работе узлов маслоохладителя с целью верификации и валидации моделей с привлечением экспериментальных данных. На основе результатов расчетов выработаны рекомендации по повышению точности построения математической и компьютерной модели цифрового двойника маслоохладителя, а также предложены подходы к усовершенствованию конструкции. |
Ключевые слова | система смазки, маслоохладитель, регулятор давления, потери давления, цифровой двойник, математическая модель, достоверная компьютерная модель, численное моделирование |
![]() |
Полный текст статьи Вам доступен |
Список цитируемой литературы |
|