Title of the article

INFLUENCE OF THE FIXATION STIFFNESS ON THE VIBRATIONS OF SHORT SINGLE-BINDING BEAMS

Authors

SHIMANOVSKY Alexander O., D. Sc. in Eng., Prof., Head of the Department “Technical Physics and Theoretical Mechanics”, Belarusian State Transport University, Gomel, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

BOCKO Jozef S., Ph. D. in Eng., Prof., Head of Institute of Structural and Processing Engineering — Head of Department of Applied Mechanics and Mechanical Engineering, Technical University of Košice, Košice, Slovakia

In the section DEFORMABLE SOLIDS MECHANICS
Year 2018 Issue 1 Pages 67–71
Type of article RAR Index UDK 534.42 Index BBK  
Abstract

The influence of the fixation stiffness on the vibrations eigenfrequencies of short single-binding beams is analyzed. The Timoshenko’s equation is used to describe the beam motion. It is shown that boundary condition applied to the end of beam can lead to 4 times more values of the beam eigenfrequencies in comparison with the experimental or computational results obtained considering the deformation of the fixation place. The recommendations on the creation of finite element models for structural vibrations analysis are given.

Keywords

free vibrations, boundary conditions, Timoshenko's equation, eigenfrequencies, fixation stiffness

  You can access full text version of the article.
Bibliography
  • Filippov A.P. Kolebanija deformiruemyh sistem [Vibrations of deformable systems]. Moscow, Mashinostroenie, 1970. 736 p.
  • Dubko A.N., Shimanovsky A.O. Raschet chastot sobstvennyh poperechnyh kolebanij zashhemlennogo sterzhnja pri uchete ego otnositelnoj dliny i podatlivosti uzla kreplenija [Calculation of the clamped rod transverse vibrations eigenfrequencies, taking into account its relative length and the mount deformability]. Trudy oblastnogo seminara-soveshhanija “Dinamika i nadezhnost mobilnyh selskohozjajstvennyh mashin” [Proc. regional seminar-meeting “Dynamics and reliability of mobile agricultural machines”]. Gomel, 1983, pp. 79–90.
  • Lavrovich N.I. Sobstvennye chastoty kolebanij sterzhnej [Rods eigenfrequencies]. Omskij nauchnyj vestnik [Omsk Scientific Bulletin], 2000, no. 13, pp. 106–108.
  • Korabathina R. Linear free vibration analysis of tapered Timoshenko beams using coupled displacement field method. Journal of Mathematical Models in Engineering, 2016, vol. 2, no. 1, pp. 27–33.
  • Majkut L. Free and forced vibrations of Timoshenko beams described by single difference equation. Journal of Theoretical and Applied Mechanics, 2009, vol. 47, no. 1, pp. 193–210.
  • Biderman V.L. Prikladnaja teorija mehanicheskih kolebanij [Applied theory of mechanical oscillations]. Moscow, Vysshaja shkola, 1972. 416 p.
  • Timoshenko S.P. Vibration problems in engineering. New York, Van Nostrand, 1955. 468 p.
  • Ananev I.V. Spravochnik po raschetu sobstvennyh kolebanij uprugih sistem [Handbook on the calculation of elastic systems natural oscillations]. Moscow–Leningrad, Gosudarstvennoe izdatelstvo tehniko-teoreticheskoj literatury, 1946. 223 p.
  • Ziegler F. Mechanics of Solids and Fluids. New York, Springer-Verlag, 1998. 845 p.
  • Dubko A.N. Obobshhennoe reshenie zadachi ob opredelenii chastot sobstvennyh poperechnyh kolebanij odnorodnyh prjamyh sterzhnej [Generalized solution of the transverse oscillations eigenfrequencies determining problem for the
    straight homogeneous rods]. Vestnik mashinostroenija [Bulletin of Machine Building], 1983, no. 6, pp. 37–38.
  • Krylov A.N. Sobranie trudov, t. 10: Vibracija sudov [Collection of works, vol. 10: Vibration of ships]. Moscow–Leningrad, Izdatelstvo AN SSSR, 1948. 398 p.
  • Bocko J., Lengvarský P. Application of finite element method for analysis of nanostructures. Acta Mechanica et Automatica, 2017, vol. 11, no. 2, pp. 116–120.
  • Shimanovsky A.O., Sukhanova O.A. Analiz tochnosti i shodimosti reshenija kontaktnyh zadach s primeneniem programmnogo kompleksa ANSYS [Analysis of the accuracy and convergence of the contact problems’ solutions with the
    use of ANSYS Software]. Trudy OIM NAN Belarusi “Aktualnye voprosy mashinovedenija” [Proc. of the Joint Institute of Mechanical Engineering of the NAS of Belarus “Topical Issues of Mechanical Engineering”], 2016, no. 5, pp. 205–208.
  • Shimanovsky A., Yakubovich V., Kapliuk I. Modeling of the pantograph-catenary wire contact interaction. Procedia Engineering, 2016, vol. 134, pp. 284–290.