Title of the article

CALCULATION METHODOLOGY OF THE NATURAL FREQUENCIES AND MODES OF MECHANICAL SYSTEMS OF AN ARBITRARY STRUCTURE WITH A PLURALITY OF POSSIBLE STATES

Authors

ALGIN Vladimir B., D. Sc. in Eng., Prof., Deputy Director General for Research, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

GOMAN Arkadiy M., Ph. D. in Eng., Assoc. Prof., Head of the Department of Dynamic Analysis and Vibration Diagnostics of Machines, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

SHPORTKO Vladimir V., Junior Researcher of the Department of Dynamic Analysis and Vibration Diagnostics of Machines, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

LOGVINETS Tatyana S., Junior Researcher of the Department of Dynamic Analysis and Vibration Diagnostics of Machines, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section MECHANICS OF MOBILE MACHINES
Year 2018 Issue 4 Pages 36–43
Type of article RAR Index UDK 621.01: 534 Index BBK  
Abstract

Methodical approaches to determination of the natural frequencies and modes of transmissions of mobile machines and similar to them badly conditioned systems with a wide natural frequencies spectrum and a plurality of states are considered. The problem is solved in a general formulation taking into account the characteristic features of the transmission in its schematization. The calculation is reduced to the computation of eigenvalues and eigenvectors of a matrix of a special form. An approach based on the preliminary matrix symmetrization and the application of the iterative numerical method of Jacobi rotations is used. This allows to evaluate all natural frequencies and modes of badly conditioned systems with a very high precision. The process of the system stiffness matrix forming is automated by means of replacing the absolutely rigid links (if any) with links with finite stiffness. To form the equations of natural oscillations of systems with a plurality of possible states, the use of the state indicators of devices with variable structure is suggested. That approach allows to obtain universal equations describing the system motion for its any possible state. Based on the developed methodology, a computer program was created and registered, an  example with its application is given.

Keywords

transmission, natural frequencies and modes, methodology, mechanical system with a plurality of possible states, state indicator

   
Bibliography
  • Biderman V.L. Teoriya mekhanicheskikh kolebaniy: ucheb. dlya vuzov [Theory of mechanical vibrations: guide for universities]. Moscow, Vysshaya shkola Publ., 1980. 408 p.
  • Panovko Ya.G. Osnovy prikladnoy teorii kolebaniy i udara [Fundamentals of applied theory of vibrations and impact]. 3rd  ed. Leningrad, Mashinostroenie Publ., 1976. 320 p.
  • Babakov I.M. Teoriya kolebaniy: ucheb. posobie [Theory of vibrations: guide]. 4th ed. Moscow, Drofa Publ., 2004. 591 p.
  • Timoshenko S.P., Young D.H., Weaver W. Vibration problems in engineering. 4th ed. New York, Wiley, 1974. 521 p.
  • Yablonskiy A.A., Noreyko S.S. Kurs teorii kolebaniy: ucheb. posobie [Course of the vibrations theory: guide]. 4th ed. Saint Petersburg, Lan Publ., 2003. 256 p.
  • Strelkov S.P. Vvedenie v teoriyu kolebaniy: ucheb. dlya vuzov [Introduction to the vibrations theory: guide for universities]. 2nd ed. Moscow, Nauka Publ., 1964. 440 p.
  • Obmorshev A.N. Vvedenie v teoriyu kolebaniy: ucheb. posobie dlya vtuzov [Introduction to the vibrations theory: guide for universities]. Moscow, Nauka Publ., 1965. 276 p.
  • Ilin M.M., Kolesnikov K.S., Saratov Yu.S. Teoriya kolebaniy: ucheb. dlya vuzov [Theory of vibrations: guide for universities]. Moscow, Bauman Moscow State Technical University Publ., 2001. 272 p.
  • Smirnov A.F. Ustoychivost i kolebaniya sooruzheniy [Stability and vibrations of structures]. Moscow, Transzheldorizdat Publ., 1958. 571 p.
  • Filin A.P. Prikladnaya mekhanika tverdogo deformiruemogo tela: soprotivlenie materialov s elementami teorii sploshnykh sred i stroitelnoy mekhaniki. Tom 3: Dinamika i ustoychivost deformiruemykh sistem [Applied mechanics of a solid deformable body: strength of materials with elements of the theory of continua and construction mechanics. Vol. 3: Dynamics and stability of deformable systems]. Moscow, Nauka Publ., 1981. 480 p.
  • Tse F.S., Morse I.E., Hinkle R.T. Mechanical vibrations. Boston, Allyn and Bacon, 1963. 523 p.
  • Tong K.N. Theory of mechanical vibration. New York, Wiley, 1960. 348 p.
  • Maslov G.S. Raschety kolebaniy valov: sprav. [Calculations of shafts oscillations: reference book]. 2nd ed. Moscow, Mashinostroenie Publ., 1980. 151 p.
  • Likhachev D.S., Taratorkin I.A., Kharitonov S.A. Osobennosti dinamicheskoy nagruzhennosti transmissii transportnogo sredstva s kombinirovannoy energoustanovkoy [Features of the dynamic loading of a vehicle transmission equipped with a combined power unit]. Trudy NAMI [Proc. NAMI], 2016, no.   4(267), pp. 22–31.
  • Algin V.B., Pavlovskiy V.Ya., Poddubko S.N. Dinamika transmissii avtomobilya i traktora [Car and tractor transmission dynamics]. Minsk, Nauka i tekhnika Publ., 1986. 214 p.
  • Artobolevskiy I.I., et al. Vibratsii v tekhnike: sprav. v 6 tomakh. Tom 1: Kolebaniya lineynykh sistem [Vibrations in engineering: reference book in 6 volumes. Vol. 1: Vibrations of linear systems]. Moscow, Mashinostroenie Publ., 1978. 352 p.
  • Faddeev D.K., Faddeeva V.N. Vychislitelnye metody lineynoy algebry [Computational methods of linear algebra]. 2nd ed. Moscow-Leningrad, Fizmatgiz Publ., 1963. 734 p.
  • Demidovich B.P., Maron I.A. Osnovy vychislitelnoy matematiki: ucheb. posobie dlya vtuzov [Fundamentals of computational mathematics: guide for universities]. 3rd ed. Moscow, Nauka Publ., 1966. 664 p.
  • Krylov V.I., Bobkov V.V., Monastyrnyy P.I. Nachala teorii vychislitelnykh metodov. Lineynaya algebra i nelineynye uravneniya [Beginnings of the computational methods theory. Linear algebra and nonlinear equations]. Minsk, Nauka i tekhnika Publ., 1985. 280 p.
  • Wilkinson J.H. The algebraic eigenvalue problem. Oxford, Clarendon Press, 1965. 662 p.
  • Voevodin V.V. Chislennye metody algebry: teoriya i algorifmy [Numerical methods of algebra: theory and algorithms]. Moscow, Nauka Publ., 1966. 248 p.
  • Parlett B.N. The symmetric eigenvalue problem. Englewood Cliffs, Prentice-Hall, 1980.
  • Demmel J.W. Applied numerical linear algebra. Philadelphia, SIAM, 1997. 416 p.
  • Verzhbitskiy V.M. Vychislitelnaya lineynaya algebra: ucheb. posobie dlya vuzov [Computational linear algebra: guide for universities]. Moscow, Vysshaya shkola Publ., 2009. 351 p.
  • Bakhvalov N.S. Chislennye metody: analiz, algebra, obyknovennye differentsialnye uravneniya: ucheb. posobie dlya vuzov [Numerical methods: analysis, algebra, ordinary differential equations: guide for universities]. Moscow, Nauka Publ., 1975. 632 p.
  • Kalitkin N.N. Chislennye metody: ucheb. posobie dlya universitetov i vtuzov [Numerical Methods: guide for universities]. 2nd ed. Saint Petersburg, BHV-Peterburg Publ., 2011. 586 p.
  • Turchak L.I., Plotnikov P.V. Osnovy chislennykh metodov: ucheb. posobie dlya vuzov [Fundamentals of numerical methods: guide for universities]. 2nd ed. Moscow, Fizmatlit Publ., 2003. 304 p.
  • Ilin V.A., Poznyak E.G. Lineynaya algebra: ucheb. dlya vuzov [Linear algebra: guide for universities]. Moscow, Nauka Publ, Fizmatlit Publ., 1999. 296 p.
  • Kvasov B.I. Chislennye metody analiza i lineynoy algebry: ucheb. posobie [Numerical methods of analysis and linear algebra: guide]. Novosibirsk, Novosibirsk State University Publ., 2012. 262 p.
  • Horn R.A., Johnson C.R. Matrix analysis. Cambridge, Cambridge University Press, 1985.
  • Bathe K.-J., Wilson E.L. Numerical methods in finite method analysis. Englewood Cliffs, Prentice-Hall, 1976. 528 p.
  • Algin V.B. Dinamika, nadezhnost i resursnoe proektirovanie transmissiy mobilnykh mashin [Dynamics, reliability and lifetime design of transmissions of mobile machines]. Minsk, Navuka i tekhnika Publ., 1995. 256 p.
  • Algin V.B. Raschet mobilnoy tekhniki: kinematika, dinamika, resurs [Calculation of mobile technics: kinematics, dynamics, lifetime]. Minsk, Belaruskaya navuka Publ., 2014. 271 p.
  • Algin V.B., Goman A.M, Logvinets T.S., Shportko V.V. Raschet chastot i form sobstvennykh kolebaniy mekhanicheskikh sistem proizvolnoy struktury so mnozhestvom vozmozhnykh sostoyaniy. Svidetelstvo ob ofitsialnoy registratsii programmy na EVM [Calculation of the natural frequencies and modes of  mechanical systems of an arbitrary structure with a plurality of possible states. The Certificate on Official Registration of the Computer Program], 2018, no. 1024.