Title of the article

MODELING ELASTO-PLASTIC BEHAVIOR OF SPACE-REINFORCED FLEXIBLE CURVED PANELS TAKING INTO ACCOUNT POSSIBLE WEAKENED RESISTANCE TO TRANSVERSE SHEARS

Authors

YANKOVSKII Andrei P., D. Sc. in Phys. and Math., Leading Researcher of the Laboratory of Fast Processes Physics, Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Science, Novosibirsk, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section MECHANICS OF DEFORMED SOLIDS
Year 2019 Issue 1 Pages 82–92
Type of article RAR Index UDK 539.4 Index BBK  
Abstract

A mathematical model of elastic-plastic behavior of flexible curved panels with spatial reinforcement structures is  developed. The inelastic deformation of the composition components is described by the theory of plastic flow with isotropic hardening. The possible weakened resistance of composite panels to transverse shears is taken into account in the framework of the non-classical Reddy theory, and the geometric nonlinearity is considered in the  Karman approximation. The solution of the formulated initial-boundary value problem is obtained by an explicit numerical “cross” scheme. The bending inelastic behavior of “flat”- and spatially-reinforced cylindrical panels under the action of dynamic loads of explosive type is investigated. The glass-plastic and metal-composite structures are considered. It is shown that for relatively thick glass-plastic panels (and in some cases for relatively thin ones), the replacement of the flat-cross structure of the reinforcement with the spatial structure leads to a decrease in the deflection of the composite structure by several tens of percent. In cases of metal-composite panels, such replacement of reinforcement structures practically does not lead to a decrease in their flexibility in the transverse direction.

Keywords

curved panels, spatial reinforcement, Reddy theory, geometric nonlinearity, elastic-plastic deformation, explosive load, “cross” scheme

   
Bibliography
  1. Zhigun I.G., Dushin M.I., Polyakov V.A., Yakushin V.A. Kompozitsonnye materialy, armirovannye sistemoy pryamykh vzaimno ortogonalnykh volokon. 2. Eksperimentalnoe izuchenie [Composite materials reinforced with a system of straight mutually orthogonal fibers. 2. Experimental study]. Mekhanika polimerov [Mechanics of polymers], 1973, no. 6, pp. 1011–1018.
  2. Tarnopolskiy Yu.M., Zhigun I.G., Polyakov V.A. Prostranstvenno-armirovannye kompozitsionnye materialy: spravochnik [Spatially reinforced composite materials: handbook]. Moscow, Mashinostroenie Publ., 1987. 224 p.
  3. Mohamed M.H., Bogdanovich A.E., Dickinson L.C., Singletary J.N., Lienhart R.R. A new generation of 3D woven fabric performs and composites. SAMPE Journal, 2001, vol. 37, no.   3, pp. 3–17.
  4. Schuster J., Heider D., Sharp K., Glowania M. Measuring and modeling the thermal conductivities of three-dimensionally woven fabric composites. Mechanics of Composite Materials, 2009, vol. 45, no. 2, pp. 241–254.
  5. Tarnopolskiy Yu.M., Zhigun I.G., Polyakov V.A. Kompozitsionnye materialy, armirovannye sistemoy pryamykh vzaimno ortogonalnykh volokon. 1. Raschet uprugikh kharakteristik [Composite materials reinforced with a system of straight mutually orthogonal fibers. 1. Calculation of elastic characteristics]. Mekhanika polimerov [Mechanics of polymers], 1973, no. 5, pp. 853–860.
  6. Kregers A.F., Teters G.A. Strukturnaya model deformirovaniya anizotropnykh, prostranstvenno armirovannykh kompozitov [Structural model of deformation of anisotropic, spatially reinforced composites]. Mekhanika kompozitnykh materialov [Mechanics of composite materials], 1982, no. 1, pp. 14–22.
  7. Yankovskii A.P. Determination of the thermoelastic characteristics of spatially reinforced fibrous media in the case of general anisotropy of their components. 1. Structural model. Mechanics of Composite materials, 2010, vol. 46, no. 5, pp. 451–460.
  8. Yankovskii A.P. Applying the Explicit Time Central Difference Method for Numerical Simulation of the Dynamic Behavior of Elastoplastic Flexible Reinforced Plates. Journal of Mechanics and Technical Physics, 2017, vol. 58, no. 7, pp. 1223–1241.
  9. Bogdanovich A.E. Nelineynye zadachi dinamiki tsilindricheskikh kompozitnykh obolochek [Nonlinear problems of the dynamics of cylindrical composite shells]. Riga, Zinatne Publ., 1987. 295 p.
  10. Malmeister A.K., Tamuzh V.P., Teters G.A. Soprotivlenie zhestkikh polimernykh materialov [Resistance of rigid polymer materials]. Riga, Zinatne Publ., 1972. 500 p.
  11. Abrosimov N.A., Bazhenov V.G. Nelineynye zadachi dinamiki kompozitnykh konstruktsiy [Nonlinear problems of dynamics composite designs]. Nizhniy Novgorod, Nizhegorodskiy gosudarstvenyy universitet Publ., 2002. 400 p.
  12. Reddy J.N. Mechanics of laminated composite plates and shells: Theory and analysis. 2nd ed. Boca Raton, CRC Press, 2004. 858 p.
  13. Kaledin V.O., Aulchenko S.M., Mitkevich A.B., Reshetnikova  E.V., Sedova E.A., Shpakova Yu.V. Modelirovanie statiki i  dinamiki obolochechnykh konstruktsiy iz kompozitsionnykh materialov [Modeling of statics and dynamics of shelled designs from composite materials]. Moscow, Fizmatlit Publ., 2014. 196 p.
  14. Yankovskii A.P. Modelirovanie dinamicheskogo uprugoplasticheskogo povedeniya gibkikh armirovannykh pologikh obolochek [Modeling of dynamic elastic-plastic behavior of flexible reinforced shallow shells]. Konstruktsii iz kompozitsion-
    nykh materialov
    [Designs from composite materials], 2018, no. 2, pp. 3–14.
  15. Yankovskii A.P. Modelirovanie osesimmetrichnogo uprugoplasticheskogo deformirovaniya tsilindricheskikh voloknistykh obolochek [Modeling of axisymmetric elastoplastic deformation of cylindrical fibrous shells]. Mekhanika mashin, mekhanizmov i materialov [Mechanics of machines, mechanisms and materials], 2018, no. 2(43), pp. 68–76.
  16. Bosiakov S.M., Zhiwei W. Analiz svobodnykh kolebaniy tsilindricheskoy obolochki iz stekloplastika pri granichnykh usloviyakh Nave [Free vibration analysis of cylindrical shell from fiberglass with Navier boundary conditions]. Mekhanika mashin, mekhanizmov i materialov [Mechanics of machines, mechanisms and materials], 2011, no. 3(16), pp. 24–27.
  17. Ghulghazaryan G.R., Ghulghazaryan R.G. O svobodnykh interfeysnykh kolebaniyakh tonkikh uprugikh krugovykh tsilindricheskikh obolochek [About free interfacial vibrations of thin elastic circular cylindrical shells]. Mekhanika mashin, mekhanizmov i materialov [Mechanics of machines, mechanisms and materials], 2013, no. 4(25), pp. 12–19.
  18. Marchuk M.V., Tuchapskyy R.I., Pakosh V.S. Issledovanie deformirovaniya gibkikh dlinnykh pologikh nekrugovykh tsilindricheskikh paneley s zashchemlennymi prodolnymi krayami na osnove utochnennoy teorii [Study of deformation of flexible long shallow noncircular cylindrical panels with clamped longitudinal edges by refined theory]. Mekhanika mashin, mekhanizmov i materialov [Mechanics of machines, mechanisms and materials], 2015, no. 4(33), pp. 59–69.
  19. Agalarova I.Y. Kolebaniya podkreplennykh perekrestnymi sistemami reber anizotropnykh tsilindricheskikh obolochek s  zapolnitelem pri osevom szhatii i s uchetom treniya [Oscillations of anisotropic cylindrical shells with filler supported with cross ribs system, under axial compression and given friction]. Mekhanika mashin, mekhanizmov i materialov [Mechanics of machines, mechanisms and materials], 2017, no. 1(38), pp. 57–63.
  20. Leonenko D.V., Zelenaya A.S. Napryazhenno-deformirovannoe sostoyanie fizicheski nelineynoy trekhsloynoy pryamougolnoy plastiny so szhimaemym zapolnitelem [Stress-strain state of a physically non-linear three-layer rectangular plate with a  compressed filler]. Mekhanika mashin, mekhanizmov i materialov [Mechanics of machines, mechanisms and materials], 2018, no. 2(43), pp. 77–82.
  21. Reissner E. On transverse vibrations of thin shallow elastic shells. Quarterly of Applied Mathematics, 1955, vol. 13, no. 2, pp. 169–176.
  22. Ivanov G.V., Volchkov Yu.M., Bogulskiy I.O., Anisimov  S.A., Kurguzov V.D. Chislennoe reshenie dinamicheskikh zadach uprugoplasticheskogo deformirovaniya tverdykh tel [The numerical solution of dynamic problems of elastic-plastic deformation of solids]. Novosibirsk, Sibirskiy universitet Publ., 2002. 352 p.
  23. Houlston R., DesRochers C.G. Nonlinear structural response of ship panels subjected to air blast loading. Computers & Structures, 1987, vol. 26, no. 1/2, pp. 1–15.
  24. Kompozitsionnye materialy. Spravochnik [Composite materials. Reference book]. Kiev, Naukova dumka Publ., 1985. 592 p.
  25. Handbook of composites. New York, Van Nostrand Reinhold Company Inc., 1982. 786 p.
  26. Nemirovskii Yu.V., Romanova T.P. Dynamic plastic deformation of curvilinear plates. International Applied Mechanics, 2001, vol. 37, no. 12, pp. 1568–1578.