Title of the article

TWO-LEVEL METHOD FOR OPTIMIZING MATERIAL COMPOSITION OF  MACHINE COMPONENTS FROM DISPERSE-REINFORCED COMPOSITES

Authors

SHILKO Sergey V., Ph. D. in Eng., Assoc. Prof., Head of the Laboratory of Mechanics of Composites and Biopolymers, V.A. Belyi Metal-Polymer Research Institute of the National Academy of Sciences of Belarus, Gomel, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section MATERIALS SCIENCE IN MECHANICAL ENGINEERING
Year 2019 Issue 2 Pages 51–57
Type of article RAR Index UDK 539.3 Index BBK  
Abstract

A two-scale calculation method is described that makes it possible to optimize the material composition of machine components and structural elements on the basis of the requirements for their deformation-strength and tribotechnical characteristics. The proposed method provides the combined use of analytical micromechanical modelling of structurally inhomogeneous structural materials in the form of disperse-reinforced composites and numerical (finite element) analysis of the stress-strain state of a particular product. The advantage of the method is ensuring of maximum strength, stiffness and wear resistance of the product with simultaneous correction of its geometric shape and the possibility of using the resulting refined CAD model for 3D printing of components of complex shape by extruded composites of optimized composition.

Keywords

machine components, disperse-reinforced composites, deformation and tribotechnical characteristics, stress state, CAD models, composition optimization, 3D printing

   
Bibliography
  1. Lyukshin B.A., Shilko S.V., Panin S.V., et al. Dispersno-napolnennye polimernye kompozity tekhnicheskogo i meditsinskogo naznacheniya [Disperse-filled polymer composites for technical and medical purposes]. Novosibirsk, SO RAN Publ., 2017. 311 p.
  2. Starzhinskiy V.E., Shalobaev E.V., Shilko S.V. Elementy privoda priborov [Device drive elements]. Minsk, Belaruskaya navuka Publ., 2012. 769 p.
  3. Christensen R.M. Mechanics of composite materials. New York, Wiley-Interscience, 1979. 348 p.
  4. Banichuk N.V. Vvedenie v optimizatsiyu konstruktsiy [Introduction to structural optimization]. Moscow, Nauka Publ., 1986. 302 p.
  5. Frolov K.V. Sovremennaya tribologiya: itogi i perspektivy [Modern tribology: results and prospects]. Moscow, LKI Publ., 2008. 480 p.
  6. Shilko S.V., Starzhinskiy V.E., Petrokovets E.M., Chernous D.A. Dvukhurovnevyy metod rascheta tribosopryazheniy iz dispersno-armirovannykh kompozitov [Two-level calculation method for tribojoints made of disperse-reinforced composites]. Trenie i  iznos [Friction and wear], 2013, vol. 34, no. 1, pp. 82–86.
  7. Mori T., Tanaka K. Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions. Acta Metallurgica, 1973, vol. 21, no. 5, pp. 571–574.
  8. Lagzdin A., Maksimov R.D., Plume E. Anizometriya uprugosti kompozita s raznoorientirovannymi chastitsami napolnitelya [Anisotropy of elasticity of a composite with irregularly oriented anisometric filler particles]. Mekhanika kompozitnykh materialov [Mechanics of composite materials], 2009, vol. 45, no. 4, pp. 507–524.
  9. Yanovskiy Yu.G., Obraztsov I.F. Nekotorye aspekty kompyuternogo modelirovaniya struktury i mikromekhanicheskikh svoystv perspektivnykh polimernykh kompozitsionykh materialov [Some aspects of computer modeling of advanced polymer composite materials structure and micromechanical properties]. Fizicheskaya mezomekhanika [Physical mesomechanics], 1998, vol. 1, no. 1, pp. 135–142.
  10. Garishin O.K., Lebedev S.N. Issledovanie strukturnykh napryazheniy v dispersno napolnennykh elastomernykh nanokompozitakh [Study of structural stress in the dispersion filled elastomeric nanocomposites]. Mekhanika kompozitsionnykh materialov i konstruktsiy [Mechanics of composite materials and structures], 2006, vol. 12, no. 3, pp. 289–299.
  11. Kozlov G.V., Burya A.I., Lipatov Yu.S. Fraktalnaya model usileniya elastomernykh nanokompozitov [A fractal model of reinforcement of elastoplastic nanocomposites]. Mekhanika kompozitnykh materialov [Mechanics of composite materials], 2006, vol. 42, no. 6, pp. 797–802.
  12. Lurie S.A., Belov P., Volkov-Bogorodsky D., Tuchkova N. Interphase Layer Theory and Application in the Mechanics of Composite Materials. Journal of Materials Science, 2006, vol. 41, no. 20, pp. 140–152.
  13. Byryan O.Yu., Novikov V.U. Modelirovanie mezhfaznogo sloya v kompozitakh s polimernoy matritsey. Opredelenie struktury i mekhanicheskikh svoystv [Modelling of interfacial layer in polymer matrix composites. Determination of its structure and mechanical properties]. Mekhanika kompozitnykh materialov [Mechanics of composite materials], 2002, vol. 38, no. 3, pp. 289–304.
  14. Shilko S.V., Chernous D.A., Panin S.V. Analiz mekhanicheskogo povedeniya dispersno-armirovannogo nanokompozita. Chast 2. Otsenka lokalnoy prochnosti vklyucheniya, mezhfaznogo sloya i prigranichnogo obema matritsy [Analysis of the mechanical behavior of disperse-reinforced nanocomposite. Part 2. Evaluation of local strength of the inclusion, the interphase layer and the border volume of the matrix]. Fizicheskaya mezomekhanika [Physical mesomechanics], 2011, vol. 14, no. 1, pp. 67–73.
  15. Panin S.V., Kornienko L.A., Aleksenko V.O., Ivanova L.R., Shilko S.V., Pleskachevsky Yu.M. Extrudable UHMWPE-Based Composites: Prospects of Application in Additive Technologies. Nanoscience and Technology: An International Journal, 2017, vol. 8, no. 2, pp. 85–94.