Title of the article

ROLE OF GRAIN-BOUNDARY PHASE IN FORMATION OF STRUCTURE AND PROPERTIES OF MECHANOCOMPOSITES BASED ON COPPER AND IRON

Authors

KOVALIOVA Svetlana A., Senior Researcher, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus

ZHORNIK Viktor I., D. Sc. in Eng, Assoc. Prof., Head of the Laboratory of Nanostructured and Superhard Materials, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

SHKURKO Vladimir V., Ph. D. in Phys. and Math., Assoc. Prof., Vice-Rector for Academic Work, Graduate School of the NAS of Belarus, Minsk, Republic of Belarus

In the section MECHANICS OF COMPOSITES
Year 2019 Issue 3 Pages 85–98
Type of article RAR Index UDK 621.762.2 Index BBK  
Abstract

The phenomenological description of the formation of mechanocomposites is proposed, which can be taken as model representations for obtaining the mechanocomposites from a wide range of metals with FCC and BCC lattice, as well as for forecasting of the structural state and properties of sintered composites based on them. The  main stages of the formation of the mechanocomposite include: 1) dispersion of the material and increase of its reactivity due to  defect formation; 2) fragmentation of the submicrostructure and formation of a “liquid-like” grain-boundary phase; 3)   deformation and diffusion saturation of the boundary phase by the segregations and followed crystallization of new phases according to the mechanism of the emergence and growth of nuclei with the formation of nanostructural composites. The mechanocomposites formed at the last stage are characterized by the increased strength properties and structural stability due to dispersion hardening by intermetallic compounds. The results of studying of the structural-phase evolution of the composites formed in the Cu-Sn and Fe-Ga systems during the mechanochemical synthesis are presented. The interrelation of the phase separation process during the synthesis of mechanocomposites with the features of the grain-boundary phase structure is considered. It is shown that the volume fraction of the grain boundary phase is formed at the level of 20–50 vol.% in the process of mechanocomposite synthesis. The materials obtained by the thermobaric sintering on their basis retain the nanosized structure and are characterized by high microhardness values (for Cu–Sn ~ 3 GPa, and for Fe–Ga ~ 7  GPa). The formation of dispersed inclusions in the alloy at the increased temperature of the annealing makes it possible to reduce the rate of microhardness decrease during heating and to provide its values at the level 2.5 GPa after annealing at 700 °С.

Keywords

mechanochemical synthesis, mechanocomposite, grain boundary phase, dispersed hardening

   
Bibliography
  1. Chuvildeev V.N., Nokhrin A.V., Pirozhnikova O.E., Gryaznov  M.Yu., Lopatin Yu.G., Smirnova E.S. Fizika novykh materialov [Physics of new materials]. Nizhny Novgorod, Nizhegorodskiy gosudarstvennyy universitet Publ., 2010. 105 p.
  2. Lovshenko F.G., Lovshenko G.F. Kompozitsionnye nanostrukturnye mekhanicheski legirovannye poroshki dlya gazotermicheskikh pokrytiy [Composite nanostructured mechanically alloyed powders for gas-thermal coatings]. Mogilev, Belorussko-rossiyskiy univesitet Publ., 2013. 215 p.
  3. Andrievski R.A. Review of thermal stability of nanomaterials. Journal of Materials Science, 2014, vol. 49, pp. 1449–1460.
  4. Avvakumov E.G. Mekhanicheskie metody aktivatsii khimicheskikh protsessov [Mechanical methods of activation of chemical processes]. Novosibirsk, Nauka Publ., 1986. 302 p.
  5. Ancharov A.I., Aulchenko V.M., Barinova A.P., Lomovskiy  O.I. Mekhanokompozity-prekursory dlya sozdaniya materialov s  novymi svoystvami [Mechanocomposites-precursors for creation of materials with new properties]. Novosibirsk, SO RAN Publ., 2010. 424 p.
  6. Grigoreva T.F., Barinova A.P., Lyakhov N.Z. Mekhanokhimicheskiy sintez v metallicheskikh sistemakh [Mechanochemical synthesis in metal systems]. Novosibirsk, Institut khimii tverdogo tela i mekhanokhimii SO RAN Publ., 2008. 309 p.
  7. Shabashov V.A., Ovchinnikov V.V., Mulyukov R.R., Valiev  R.Z., Filippova N.P. Ob obnaruzhenii “zernogranichnoy fazy” v submikrokristallicheskom zheleze messbauerskim metodom [On detection of “grain boundary phase” in submicrocrystalline iron by Mössbauer method]. Fizika metallov i metallovedenie [Physics of metals and metallurgy], 1998, vol. 85, no. 3, pp. 100–112.
  8. Kaloshkin S.D., Tomilin I.A., Tcherdyntsev V.V. Thermodynamic approach to the description of the steady — state phase composition of alloys obtained by mechanical alloying techniques. Journal of Metastable and Nanocrystalline Materials, 2003, vol. 15–16, pp. 209–214.
  9. Bokshteyn B.S., Bokshteyn S.Z., Zhukhovitskiy A.A. Termodinamika i kinetika diffuzii v tverdykh telakh [Thermodynamics and kinetics of diffusion in solids]. Moscow, Metallurgiya Publ., 1974. 280 p.
  10. Boldyrev V.V. Mekhanokhimiya i mekhanicheskaya aktivatsiya tverdykh veshchestv [Mechanochemistry and mechanical activation of solids]. Uspekhi khimii [Chemistry advances], 2006, vol. 75, no. 3, pp. 203–216.
  11. Fecht H.J. Nanostrucrure formation by mechanical attrition. Nanostructured Materials, 1995, vol. 6, pp. 33–42.
  12. Panin V.E., Egorushkin V.E., Panin A.V. Nelineynye volnovye protsessy v deformiruemom tverdom tele kak mnogourovnevoy ierarkhicheski organizovannoy sisteme [Nonlinear wave processes in a deformable solid as in a multiscale hierarchically organized system]. Uspekhi fizicheskikh nauk [Advances in physical sciences], 2012, vol. 182, no. 12, pp. 1351–1357.
  13. Elsukov E.P., Dorofeev G.A. Mekhanicheskoe splavlenie binarnykh sistem Fe-M (M = C, Si, Ge, Sn): kinetika, termodinamika i mekhanizm atomnogo peremeshivaniya [Mechanical alloying of Fe-M binary systems (M = C, Si, Ge, Sn): kinetics, thermodynamics and atomic mixing mechanism]. Khimiya v interesakh ustoychivogo razvitiya [Chemistry for sustainable development], 2002, vol. 10, no. 1–2, pp. 59–68.
  14. Kaloshkin S.D., Tomilin I.A., Andrianov G.A., Baldokhin  U.V., Shelekhov E.V. Phase transformations and hyperfine interaction in mechanically alloyed Fe-Cu solid solution. Materials Science Forum, 1996, vol. 235–238, pp. 565–570.
  15. Chuvildeev V.N. Teoriya neravnovesnykh granits zeren v  metallakh i ee prilozheniya dlya opisaniya nano i mikrokristallicheskikh materialov [Theory of nonequilibrium grain boundaries in metals and its applications to nano- and microcrystalline materials]. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo [Bulletin of Lobachevsky University of Nizhni Novgorod], 2010, no. 5(2), pp. 124–131.
  16. Gainutdinov I.I., Pavlukhin Yu.T. The structure features of the complex oxides plastic flow — the AB2O3 model system. Journal of Alloys and Compounds, 1997, vol. 260, pp. 208–210.
  17. Noskov F.M. Strukturnaya samoorganizatsiya v oblastyakh lokalizatsii plasticheskoy deformatsii v splavakh s martensitnymi prevrashcheniyami (sistemy Fe-Mn, Ni-Ti) [Structural self-organization in the areas of localization of plastic deformation in alloys with martensitic transformations (Fe-Mn, Ni-Ti systems)]. Krasnoyarsk, Sibirskiy federalnyy universitet Publ., 2017. 248 p.
  18. Vityaz P.A., Zhornik V.I., Kovaleva S.A., Grigoreva T.F. Poluchenie kompozitsionnykh poroshkov s metallicheskoy matritsey metodom mekhanokhimicheskogo sinteza [Production of composite powders with metal matrix by the method of mechanic and chemical synthesis]. Poroshkovaya metallurgiya v  Belarusi: vyzovy vremeni [Powder metallurgy in Belarus: challenges of time], 2017, pp. 414–459.
  19. Borunova A.B., Zhernovenkova Yu.V., Streletskiy A.N., Portnoy  V.K. Opredelenie energonapryazhennosti mekhanoaktivatorov razlichnogo tipa [Determination of power density of mechanoactivation of different types]. Obrabotka dispersnykh materialov i sred [Processing of dispersed materials and media], 1999, no. 9, pp. 158–163.
  20. Balzar В. Voigt-function model in diffraction line-broadening analysis. Defect and Microstructure Analysis by Diffraction, 1999, ch. 7, pp. 94–126.
  21. Gladyshevskiy E.I., Bodak O.I., Pecharskiy V.K. Zhelezo-galliy [Iron-gallium]. Diagrammy sostoyaniya dvoynykh metallicheskikh sistem. Tom 2 [State diagrams of double metal systems. Volume 2], 1997, pp. 488–491.
  22. Grigoreva T.F., Kiseleva T.Yu., Kovaleva S.A., Novakova  A.A., Tsybulya S.V., Barinova A.P., Lyakhov N.Z. Issledovanie produktov vzaimodeystviya zheleza i galliya v protsesse mekhanicheskoy aktivatsii [Study of the products of interaction between iron and gallium during mechanical activation]. Fizika metallov i metallovedenie [Physics of metals and metallurgy], 2012, vol. 113, no. 6, pp. 607–614.
  23. Kovaleva S.A., Grigoreva T.F., Vityaz P.A. Strukturno-fazovye prevrashcheniya pri mekhanicheskoy aktivatsii v sistemakh s legkoplavkimi metallami [Structural-phase transformations during mechanical activation in systems with fusible metals]. Sovremennye metody i tekhnologii sozdaniya i obrabotki materialov. Kniga 2 [Modern methods and technologies of creation and processing of materials. Book 2], 2011, pp. 190–198.
  24. Vityaz P.A., Zhornik V.I., Kovaleva S.A., Grigoreva T.F. Vliyanie rezhimov mekhanoaktivatsii na strukturu i svoystva poroshkov-prekursorov sistemy “med — olovo” i splavov, spechennykh  na ikh osnove [Influence of regimes of mechanical activation  on structure and properties of the powder precursor of “tin-copper” and sintered alloys based on them]. Vestnik Vitebskogo gosudarstvennogo tekhnologicheskogo universiteta [Bulletin of Vitebsk State Technological University], 2014, no. 26, pp. 110–120.
  25. Gracheva T.A., Kruglov A.V., Malygin N.D., Shchurov A.F. Struktura ultramelkozernistoy medi i bronzy [Structure of ultrafine copper and bronze]. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo [Bulletin of Lobachevsky University of Nizhni Novgorod], 2004, no. 1(7), pp. 178–184.