Title of the article

ON THE METHOD OF EXPERIMENTAL EVALUATION OF MODEL PARAMETERS FOR PREDICTING THE CHARACTERISTICS OF PIPE MATERIAL CRACK RESISTANCE, TAKING INTO ACCOUNT THE INFLUENCE OF CORROSION-EROSION PROCESSES

Authors

VESELUKHA Vadim M., Ph. D. in Eng., Lecturer of Special Disciplines, Lida College of the State University of Grodno named after Yanka Kupala, Lida, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

BOGDANOVICH Alexander V., D. Sc. in Eng., Assoc. Prof., Professor of the Department of Theoretical and Applied Mechanics, Belarusian State University, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section MECHANICS OF DEFORMED SOLIDS
Year 2020 Issue 2 Pages 87–90
Type of article RAR Index UDK 539.4 Index BBK  
Abstract The article considers the peculiarities of the model for predicting the crack resistance characteristics of pipe material taking into account the influence of corrosion-erosion processes during long-term operation with an estimation of one of the major characteristics of cyclic crack resistance, threshold stress intensity factor. A methodical description is given for the experimental determination of the values of cyclic crack resistance characteristics (threshold stress intensity factor, parameters of Paris equation of fatigue fracture kinetic diagram) of the pipe material under the direct corrosion-erosion effect of a liquid medium on fatigue crack front in laboratory compact specimen.
Keywords

crack resistance, survivability, pipeline, stress intensity factor, tightening, corrosion-erosion processes

  You can access full text version of the article.
Bibliography
  1. Opredelenie kharakteristik treshchinostoykosti (vyazkosti razrusheniya) pri staticheskom nagruzhenii [Determination of crack resistance characteristics (fracture toughness) under static loading]. Metodicheskie rekomendatsii MR 1-95. Mekhanika katastrof. Opredelenie kharakteristik treshchinostoykosti konstruktsionnykh materialov [Methodical recommendations MR 1-95. Mechanics of disasters. Determination of crack resistance characteristics of structural materials], 1995, pp. 7–82.
  2. State Standard 25.506-85. Opredelenie kharakteristik treshchinostoykosti (vyazkosti razrusheniya) pri staticheskom nagruzhenii [Determination of crack resistance characteristics (fracture toughness) under static loading]. Moscow, Standartov Publ., 1985. 42 p.
  3. Standard of Belarus 2502-2017. Truby nefteprovodnye. Metody ispytaniya trubnoy stali na treshchinostoykost (Standart Belarusi) [Oil pipeline pipes. Methods of testing pipe steel for crack resistance (Standard of Belarus)]. Minsk, Gosstandart Publ., 2017. 29 p.
  4. Panasyuk V.V., Ratych L.V., Dmytrakh I.N. O nekotorykh metodicheskikh osobennostyakh issledovaniya tsiklicheskoy treshchinostoykosti konstruktsionnykh materialov v zhidkikh sredakh [Some methodological features of the study of cyclic crack resistance of structural materials in liquid media]. Materialy VI Mezhdunarodnogo kollokviuma “Mekhanicheskaya ustalost metallov” [Proc. 6 International colloquium “Mechanical fatigue of metals”]. Kiev, 1983, pp. 284–292.
  5. Sosnovskiy L.A., Makhutov N.A. Korrozionno-mekhanicheskaya ustalost: pryamoy i obratnyy effekty (obobshchayushchaya statya) [Corrosion-mechanical fatigue: direct and reverse effects (summary article)]. Zavodskaya laboratoriya [Industrial Laboratory], 1993, vol. 59, no. 7, pp. 33–44.
  6. Corrosion Fatigue: Chemistry, Mechanics and Microstructure. Houston, National Association of Corrosion Engineers, 1972. 762 p.
  7. Vosikovski R. Rost ustalostnoy treshchiny v truboprovodnoy stali Kh-65 pri ispytaniyakh s nizkoy chastotoy tsiklov v solenoy i presnoy vode [Fatigue crack growth in pipeline steel X-65 during tests with low cycle frequency in salt and fresh water]. Teoreticheskie osnovy inzhenernykh raschetov [Theoretical foundations of engineering calculations], 1975, no. 4, pp. 12–20.
  8. Tokano T., Okamura H. Fatigue crack propagation in aqueous environments. Proc. International Conference on Fracture Mechanics and Technology. Hong Kong, 1977, vol. 1, pp. 669–712.
  9. Veselukha V.M., Bogdanovich A.V. Metodika otsenki ostatochnogo resursa trub lineynoy chasti nefteprovoda s tipichnymi defektami po kriteriyu treshchinostoykosti v usloviyakh tsiklicheskogo nagruzheniya [Method of assessment of the residual life of pipes of the linear part of the pipeline with the typical defects according to the crack resistance criteria under cyclic loading]. Mekhanika mashin, mekhanizmov i materialov [Mechanics of machines, mechanisms and materials], 2017, no. 2(39), pp. 5–11.
  10. Sosnovskiy L.A. Statisticheskaya mekhanika ustalostnogo razrusheniya [Statistical mechanics of fatigue failure]. Minsk, Nauka i tekhnika Publ., 1987. 288 p.
  11. Sosnovskiy L.A., Kozik A.N. Metodika raschetno-eksperimentalnoy otsenki korrozionno-mekhanicheskoy prochnosti tribofaticheskikh sistem [Method for calculating and experimental evaluation of the corrosion-mechanical strength of tribofatigue systems]. Mekhanika mashin, mekhanizmov i materialov [Mechanics of machines, mechanisms and materials], 2011, no. 3(16), pp. 49–53.
  12. Sosnovskiy L.A., Kostyuchenko A.A., Vorobev V.V. Inzhenernaya model korrozionno-mekhanicheskoy prochnosti [Engineering model of corrosion-mechanical strength]. Vestsi Natsiyanalnay akademii navuk Belarusi. Seryya fizika-tekhnichnykh navuk [Proceedings of the National Academy of Sciences of Belarus. Physical-Technical Series], 2008, no. 2, pp. 66–70.
  13. Sherbakov S.S., Sosnovskiy L.A Mekhanika tribofaticheskikh sistem [Mechanics of tribo-fatigue systems]. Minsk, Belorisskiy gosudarstvennyy universitet Publ., 2011. 407 p.