Title of the article

DYNAMIC STABILIZATION OF RINGS OF LOW RIGIDITY AFTER THE RING-ROLLING

Authors

ANTONYUK Vladimir E., D. Sc. in Eng., Chief Researcher, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

SANDOMIRSKI Sergei G., D. Sc. in Eng., Assoc. Prof., Head of the Laboratory of Metallurgy in Mechanical Engineering, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section DYNAMICS, DURABILITY OF VEHICLES AND STRUCTURES
Year 2020 Issue 3 Pages 34–41
Type of article RAR Index UDK 621.81 Index BBK  
DOI https://doi.org/10.46864/1995-0470-2020-3-52-34-41
Abstract The physics fundamentals and advantages of ring-rolling the products are described. The analysis of production volumes of the products by ring-rolling in Europe is carried out. The definition of rings of low rigidity is given. The problems of using of the ring-rolling for their production, the main errors and deformations arising in the process of manufacturing of rings of low rigidity are considered. The ways of increasing the geometric accuracy of the rings and relieving residual stresses are analyzed. The fundamental advantage of the method of dynamic stabilization of rings of low rigidity to other types of correction is explained. A brief description of the device expanders for dressing rings of low rigidity with a wedge mechanism is presented. The problems of correction with their use are characterized. As a fundamentally new technological operation that increases the accuracy of manufacturing of rings of low rigidity and reduces residual stresses in them, an effective technology of dynamic stabilization, cyclic loading, is proposed. The prospects of using the cyclic loading method to increase geometric accuracy and reduce residual stresses in rings of low rigidity are substantiated. Recommendations are given on the creation of universal installations for the dynamic stabilization of rings of low rigidity in order to eliminate the deformations that have arisen during the production process and relieve residual stresses after the rings are manufactured on ring-rolling complexes. The calculated dependences for the design of installations for the dynamic stabilization of rings with outer diameters up to 3,000 mm and weight up to 1,000 kg are given. The results can be used to increase the accuracy of manufacturing of rings billets of low rigidity during their planned production at the Belarusian Automobile Plant BelAZ and other enterprises.
Keywords

ring, ring-rolling, rigidity, residual stresses, cyclic loading, dynamic stabilization

  You can access full text version of the article.
Bibliography
  1. Antonyuk V.E., Vityaz P.A., Parkhomchik P.A., Rudyy V.V. Koltseraskatka v proizvodstve detaley mashinostroeniya [Ring rolling in the manufacture of mechanical engineering parts]. Minsk, Belaruskaya navuka Publ., 2013. 188 p. (in Russ.).
  2. Storozhev M.V., Popov E.A. Teoriya obrabotki metallov davleniem [Theory of metal forming]. Moscow, Mashinostroenie Publ., 1977. 424 р. (in Russ.).
  3. Tselikov A.I., Tomlenov A.D., Zyuzin V.I. Teoriya prokatki [Rolling theory]. Moscow, Metallurgiya Publ., 1982. 335 р. (in Russ.).
  4. Polukhin P.I., Gunn G.Ya., Galkin A.M. Soprotivlenie plasticheskoy deformatsii metallov i splavov [Resistance to plastic deformation of metals and alloys]. Moscow, Metallurgiya Publ., 1983. 352 р. (in Russ.).
  5. Kovka i shtampovka. T. 2. Goryachaya shtampovka [Forging and stamping. Vol. 2. Hot stamping]. Moscow, Mashinostroenie Publ., 1986. 692 р. (in Russ.).
  6. Groche P., Fritsche D. Inkrementelle Massivumformung. Werkstattstechnik, 2005, no. 10, pp. 798–802.
  7. Doege E., Behrens B.-A. Handbuch Umformtechnik. Springer Verlag, 2007. 913 р.
  8. Werner W., Volkmar S. Freiformschmieden und Ringwalzen verbessern Bauteileigenschaften. Sonderdruck aus MM Maschinenmarkt, 2000. 5 р.
  9. Technologiehandbuch Radial-Axial-Ringwalzmaschine. Thyssen Maschinenbau GmbH: Wagner Dortmund, 1990. 105 р.
  10. Marczinski H. Der Entwicklungsstand neuzeitlicher Ringwalzwerke. Stahl und Eisen, 1974, vol. 94, no. 24, pp. 1207–1211.
  11. Hülshorst T. Erhöhung der Prozessstabilität beim Ringwalzen durch adaptive Regelung der Ringlage. Verlag Shaker, 2004. 164 р.
  12. Golz J. Prozesssynchrone Simulation der Temperaturverteilung in radial-axial gewalzten Ringen mit Rechteckquerschnitt. D. Sc. Thesis. Bochum, 2008. 204 р.
  13. Kneißler А. Multisensor-Strategie zur Optimierung des Anwalzverhaltens beim Radial-Axial-Ringwalzen. Verlag Shaker, 2009. 162 р.
  14. Hehl A. Thermomechanische Behandlung beim Ringwalzen. Verlag Shaker, 2010. 229 р.
  15. Hehl A., Hirt G. Schnelle Modelle zur Simulation der Gefügeevolution beim Ringwalzen. Journal of Head Treatment and Materials, 2010, no. 6, pp. 287–298.
  16. Antonyuk V.E., Yavorskiy V.V. Razrabotka klassifikatora kolets pri ispolzovanii protsessa koltseraskatki [Development of a ring classifier using the ring rolling process]. Vestnik Brestskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Mashinostroenie, 2019, no. 4, pp. 42–45 (in Russ.).
  17. Kluge A., Faber H. Glühende Ringe – Das Ringwalzen als wichtiges Verfahren der Massivumformung. MM Industrie Magasin, 2005, pp. 26–31.
  18. Ringwalzen. Wagner Banning. SMS Meer. 171 р.
  19. SMS Group. Available at: http://www.sms-meer.com/portfolio/schmiedetechnik/ringwalzen/ringexpander.html (accessed 10 June 2020).
  20. Burns Machinery Inc. Available at: http://www.ringmills.com/ring_sizers.htm (accessed 10 June 2020).
  21. New series of hydraulic ring extenders. 2014. Available at: http://www.forgingmagazine.com/new-products/new-series-hydraulic-ring-expanders-0 (accessed 10 June 2020).
  22. KJ-22/1422X12500 TIANSHUI METALFORMING MACHINE TOOL CO. Available at: https://www.ru.made-inchina.com/productSearch?keyword=KJ22+%2F+1422X12500+&currentPage=1 (accessed 10 June 2020).
  23. Antonyuk V.E. Dinamicheskaya stabilizatsiya v proizvodstve malozhestkikh detaley [Dynamic stabilization in the production of parts of low rigidity]. Minsk, Belaruskaya navuka Publ., 2017. 190 р. (in Russ.).
  24. Antonyuk V.E., Sandomirski S.G. Analiz odnorodnosti raspredeleniya magnitnykh svoystv v tonkostennykh diskakh dlya prognozirovaniya stabilnosti ikh formy [Analysis of the uniformity of the distribution of magnetic properties in thin-walled disks to predict the stability of their shape]. Transformatsiya nerazrushayushchego kontrolya i tekhnicheskoy diagnostiki v epokhu tsifrovizatsii. Obespechenie bezopasnosti obshchestva v izmenyayushchemsya mire. Trudy 22 Vserossiyskoy konferentsii po nerazrushayushchemu kontrolyu i tekhnicheskoy diagnostike [The transformation of non-destructive testing and technical diagnostics in the era of digitalization. Ensuring the security of society in a changing world. Proc. 22th All-Russian conference on non-destructive testing and technical diagnostics]. Moscow, 2020, pp. 141–144 (in Russ.).
  25. Lakhtin Yu.M., Leonteva V.P. Materialovedenie [Materials Science]. Moscow, Mashinostroenie Publ., 1980. 493 р. (in Russ.).