Title of the article

TENSILE FRACTURE SPECIFICITY OF UNIDIRECTIONAL METAL-POLYMER GLASS-FIBER COMPOSITES WITH CORD WIRE

Authors

ASHCHEPKAU Mikhail Yu., Ph. D. in Eng., Leading Expert in Composite Materials, JSC “Polotsk-Steklovolokno”, Polotsk, Republic of Belarus

SHIL’KO Sergey V., Ph. D. in Eng., Head of the Laboratory “Mechanics of Composites and Biopolymers”, V.A. Belyi Metal-Polymer Research Institute of the NAS of Belarus, Gomel, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

DROBYSH Tatyana V., Researcher, V.A. Belyi Metal-Polymer Research Institute of the NAS of Belarus, Gomel, Republic of Belarus

CHOE Heeman, Ph. D., Professor, Kookmin University, Seoul, Republic of Korea

In the section MECHANICS OF COMPOSITES
Year 2020 Issue 3 Pages 55–62
Type of article RAR Index UDK 539.3; 539.4; 691.175.2 Index BBK  
DOI https://doi.org/10.46864/1995-0470-2020-3-52-55-62
Abstract In this paper, the problem of increasing the strength and elastic modulus of unidirectional structural glass-fiberreinforced plastic (GFRP) is considered and the possibilities of using hybrid reinforcement based on GFRP and high-strength steel cord wire are discussed. Static tensile testing of laboratory samples of metal-glass-reinforced plastics was performed, the results of which show the significant dependence of the mechanical characteristics on the adhesion of both filler components to the binder. To realize high mechanical characteristics of the metal-glasspolymer composites under consideration, it is necessary, besides ensuring strong adhesion of filler to binder, to create a certain gradient of the elastic modulus of the intermediate layer near the surfaces of the components using bionic principles for constructing high-strength natural joints.
Keywords

directionally reinforced composites, metal-glass plastics, hybrid fillers, glass-fiber-reinforced plastic, cord wire, mechanical tests, fracture, adhesion

  You can access full text version of the article.
Bibliography
  1. Kuperman A.M., Gorbatkina Yu.A., Turusov R.A. Highstrength reinforced plastics. Russian Journal Physical Chemistry, 2012, vol. 6, iss. 4, pp. 553–562.
  2. Ilin D.A. Kompozytnaya armatura na osnove steklyannykh i uglerodnykh volokon dlya betonnykh konstruktsiy. Diss. kand. tekhn. nauk [Glass and carbon fiber composite reinforcement for concrete structures. Ph. D. Thesis]. Moscow, 2017. 141 p. (in Russ.).
  3. You Y.-J., Park Y.-H., Kim H.-Y., Park J.-S. Hybrid effect on tensile properties of FRP rods with various material compositions. Composite Structures, 2007, vol. 80, pp. 117–122. DOI: https://doi.org/10.1016/j.compstruct.2006.04.065.
  4. Szmigiera E.D., Protchenko K., Urbański M., Garbacz A. Mechanical properties of hybrid FRP Bars and nano-hybrid FRP bars. Archives of Civil Engineering, 2019, vol. 65, no. 1, pp. 97–110. DOI: https://doi.org/10.2478/ace-2019-0007.
  5. Wu G., Wu Z.-S., Luo Y.-B., Sun Z.-Y., Hu X.-Q. Mechanical properties of steel-FRP composite bar under uniaxial and cyclic tensile loads. Journal of Materials in Civil Engineering, 2010, vol. 22, no. 10, pp. 1056–1066. DOI: https://doi.org/10.1155/2017/5691278.
  6. Sun Z., Tang Y., Luo Y., Wu G., He X. Mechanical properties of steel-FRP composite bars under tensile and compressive loading. International Journal of Polymer Sciences, 2017. DOI: https://doi.org/10.1155/2017/5691278.
  7. Tang Y., Sun Z., Wu G., Compressive behavior of sustainable steel-FRP composite bars with different slenderness ratios. Sustainability, 2019, vol. 11, no. 4. DOI: https://doi.org/10.3390/su11041118.
  8. Cui Y., Cheung M.M.S., Noruziaan B., Lee S., Tao J. Development of ductile composite reinforcement bars for concrete structures. Materials and Structures, 2008, vol. 41, no. 9, pp. 1509–1518. DOI: https://doi.org/10.1617/s11527-007-9344-8.
  9. Seo D.-W., Park K.-T., You Y.-J., Lee S.-Y. Experimental investigation for tensile performance of GFRP-steel hybridized rebar. Advances in Materials Science and Engineering, 2016, no. 1. DOI: https://doi.org/10.1155/2016/9401427.
  10. Bobarikin Yu.L. Tonkoe volochenie i svivka v metallokord stalnoy latunirovannoy provoloki [Fine drawing and braiding in steel cord of brass-plated steel wire]. Gomel, Gomelskiy gosudarstvennyy tekhnicheskiy universitet im. P.O. Sukhogo Publ., 2018. 304 p. (in Russ.).
  11. Akunets N.A. Vliyanie kharakteristik razryvnykh ispytatelnykh mashin na rezultaty ispytaniy plastycheskikh svoystv provoloki RML [Influence of the characteristics of explosive testing machines on the results of testing the plastic properties of RML wire]. Foundry production and metallurgy, 2019, no. 1, pp. 89–94 (in Russ.).
  12. Shmurak I.L. Shinnyy kord i tekhnologiya ego obrabotki [Tire cord and processing technology]. Moscow, Nauchno-tekhnicheskiy tsentr “NIIShP” Publ., 2007. 220 p. (in Russ.).
  13. Lopez A., Galati N., Alkhrdaji T., Nanni A. Strengthening of a reinforced concrete bridge with externally bonded steel reinforced polymer (SRP). Composites Part B: Engineering, 2007, vol. 38, no. 4. pp. 429–436. DOI: https://doi.org/10.1016/j. compositesb.2006.09.003
  14. State Standard 34261-2017. Steklovolokno. Rovingi. Izgotovlenie ispytatelnykh obraztsov i opredelenie prochnosti na rastyazhenie propitannykh rovingov [Textile glass. Rovings. Manufacture of test specimens and determination of tensile strength of impregnated rovings]. Moscow, Standartinform Publ., 2017. 22 p. (in Russ.).
  15. Selyaev V.P., Nizina T.A., Nizin D.R., Popova A.I. Tekhnologicheskie kharakteristiki modifitsirovannykh epoksidnykh svyazuyushchikh [Technological characteristics of modified epoxy binders]. Nauchnye trudy RAASN, 2017, vol. 2, pp. 358–365 (in Russ.).
  16. Chursova L.V., Babin A.N., Panina N.N., Tkachuk A.I., Terekhov I.V. Ispolzovanie aromaticheskikh aminnykh otverditeley dlya sozdaniya epoksidnykh svyazuyushchikh dlya PKM konstruktsionnogo naznacheniya [The use of aromatic amine hardeners to create epoxy binders for PCM of construction purposes]. Proceedings of VIAM, 2016, no. 6(42), pp. 24–37 (in Russ.).
  17. Tarnopolskiy Yu.M., Kintsis T.Y. Metody staticheskikh ispytaniy armirovannykh plastikov [Methods of static testing of reinforced plastics]. Moscow, Khimiya Publ., 1975. 264 p. (in Russ.).
  18. Shil’ko S.V., Bodrunov N.N. Sposob ispytania materiala pri rastyazhenii [Method for tensile testing of material]. Patent RB, no. 6144, 2004 (in Russ.).
  19. Shil’ko S.V., Ryabchenko T.V., Ermolkevich I.V., Romanovich S.I., Fedosenko N.N. Attestatsiya fiziko-mekhanicheskikh svoystv napravlenno-armirovannykh polimernykh kompozitov dlya elementov konstruktsiy, ekspluatiruemykh v ekstremalnykh usloviyakh [Attestation of physical and mechanical properties of directional reinforced polymer composites for constructions elements operated under extreme conditions]. Aktualnye voprosy mashinovedeniya, 2017, no. 6, pp. 329–333 (in Russ.).
  20. Volik A.R., Sazon S.A., Churilo K.Yu. Osobennosti ispytaniy na rastyazhenie kompozitnoy armatury [Features of tensile tests of composite reinforcement]. Vesnik of Yanka Kupala State University of Grodno. Series 6. Engineering Science, 2020, vol. 10, no. 1, pp. 110–118 (in Russ.).
  21. Plueddemann E.P. Interfaces in polymer matrix composites. New York, London, Academic Press, 1974. 296 p.
  22. Shilko S. Adaptive Composite Materials: Bionics Principles, Abnormal Elasticity, Moving Interfaces. Advances in Composite Materials – Analysis of Natural and Man-Made Materials, ch. 23, pp. 497–526. DOI: https://doi.org/10.5772/18190.
  23. Ivanov LA., Prokopiev P.S. Izobreteniya v oblasti nanotekhnologiy, napravlennye na reshenie prakticheskikh zadach. Chast 3 [The inventions in nanotechnologies as practical solutions. Part 3]. Nanotechnologies in Construction, 2019, vol. 11, no. 3, pp. 292–303. DOI: https://doi.org/10.15828/2075-8545-2019-11-3-292-303/ (in Russ.).