Title of the article

ANALYSIS OF THE EFFECT OF CEMENTATION DURATION ON THE EFFECTIVE HARDENED LAYER THICKNESS AND MAGNETIC PARAMETER OF 18ХГТ (18KHGT) STEEL AFTER QUENCHING

Authors

SANDOMIRSKI Sergei G., D. Sc. in Eng., Assoc. Prof., Head of the Laboratory of Metallurgy in Mechanical Engineering, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

VALKO Aleksandr L., Senior Researcher, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

RUDENKO Sergei P., Ph. D. in Eng., Leading Researcher, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section MATERIALS SCIENCE IN MECHANICAL ENGINEERING
Year 2020 Issue 3 Pages 71–77
Type of article RAR Index UDK 669.15; 620.179.14 Index BBK  
DOI https://doi.org/10.46864/1995-0470-2020-3-52-71-77
Abstract Highly stressed transmission parts of energy-saturated machines are made of steels subjected to carburization and subsequent hardening. A low-carbon steel product forms a strong, high-carbon surface layer with a soft and viscous core. An important parameter of the hardened layer is its effective thickness hэфф. The article studies the effect of the duration of the cementation process on hэфф of samples from 18ХГТ (18KhGT) steel used for the manufacture of gear wheels of highly loaded transmissions. The possibility of using a magnetic parameter for non-destructive testing hэфф was also investigated. The device “Magnetic Sorter MS-1” was used, which measures the gradient of the normal component of the remanent magnetization field above the point of contact of the magnet pole with the metal surface. To determine hэфф, interpolation of measurements of the distribution of microhardness HV over the layer thickness on manufactured microsections was used. HV microhardness values are converted to HRC hardness values according to the dependence recommended by the international standard. Studies have shown that hэфф of the cemented layer of 18ХГТ (18KhGT) steel after quenching linearly depends on the cementation time. There is a correlation between the hэфф of the samples studied and the readings of the MS-1 device. This is a prerequisite for the development of a non-destructive method for controlling the process of chemical heat treatment of gear wheels of transmissions of mobile machines.
Keywords

surface hardening, cementation, hardness, effective thickness of the hardened layer, non-destructive testing, pole magnetization

  You can access full text version of the article.
Bibliography
  1. Rudenko S.P., Sandomirski S.G., Valko A.L., Shishko S.A., Karpovich P.G. Analiz primeneniya kompleksno-legirovannykh staley dlya zubchatykh koles karernykh samosvalov [Analysis of application of complex-alloyed steels for gear wheels of career dump trucks]. Mechanics of machines, mechanisms and materials, 2018, no. 2(43), pp. 55–60 (in Russ.).
  2. Rudenko S.P., Valko A.L., Sandomirski S.G. Primenenie perspektivnykh ekonomno-legirovannykh marok staley dlya zubchatykh koles mobilnykh mashin [Application of promising sparingly alloyed steels for gears of mobile machines]. Mechanics of machines, mechanisms and materials, 2019, no. 4, pp. 61–69 (in Russ.).
  3. Gulyaev A.P. Materialovedenie [Materials science]. Moscow, Metallurgiya Publ., 1986. 544 p. (in Russ.).
  4. Lakhtin Yu.M., Leonteva V.P. Materialovedenie [Materials science]. Moscow, Mashinostroenie Publ., 1980. 493 p. (in Russ.).
  5. Susin A.A. Khimiko-termicheskoe uprochnenie vysokonapryazhennykh detaley [Chemical-thermal hardening of highly stressed parts]. Minsk, Belorusskaya nauka Publ., 1999. 175 p. (in Russ.).
  6. Standard of Belarus 2307-2013. Poverkhnostno-uprochnennye sloi metallicheskikh detaley. Metody izmereniya tolshchiny [Surface hardened layers of metal parts. Thickness measurement methods]. Minsk, Gosstandart Publ., 2013. 16 p. (in Russ.).
  7. Rudenko S.P., Valko A.L. Razrabotka rezhimov khimiko-termicheskoy obrabotki zubchatykh koles iz ekonomno legirovannoy stali [Development of the regimes of chemical heat treatment of gear wheels from sparingly alloyed steel]. Mechanics of machines, mechanisms and materials, 2017, no. 2, pp. 34–38 (in Russ.).
  8. Rudenko S.P., Valko A.L. Kontaktnaya ustalost zubchatykh koles transmissiy energonasyshchennykh mashin [Contact fatigue of power transmission gears of energy saturated machines]. Minsk, Belaruskaya navuka Publ., 2014. 126 p. (in Russ.).
  9. Rudenko S.P., Valko A.L. Soprotivlenie kontaktnoy ustalosti tsementovannykh zubchatykh koles iz khromonikelevykh staley [Contact fatigue resistance of carburized gears from chromium-nickel steels]. Metallovedenie i termicheskaya obrabotka metallov, 2017, no 1, pp. 58–62 (in Russ.).
  10. Sorokin V.G., Volosnikova A.V., Vyatkin S.A. Marochnik staley i splavov [Grade guide of steels and alloys]. Moscow, Mashinostroenie Publ., 1989. 640 p. (in Russ.).
  11. State Standard 4543–2016. Metalloproduktsiya iz konstruktsionnoy legirovannoy stali [Structural alloyed steel products]. Moscow, Standartinform Publ., 2019. 53 p. (in Russ.).
  12. Klyuev V.V., Muzhitskiy V.F., Gorkunov E. S., Shcherbinin V.E. Nerazrushayushchiy kontrol. T. 6. Kn. 1. Magnitnye metody kontrolya [Nondestructive testing. Volume 6. Book 1. Magnetic testing methods]. Moscow, Mashinostroenie Publ., 2006. 848 p. (in Russ.).
  13. Gorkunov E.S., Lapidus B.M., Zagaynov A.V. Elektromagnitnye metody i sredstva kontrolya kachestva poverkhnostnogo uprochneniya [Electromagnetic methods and means of quality control surface hardening]. Defektoskopiya, 1988, no. 7, pp. 7–13 (in Russ.).
  14. Gorkunov E.S. Magnitnye pribory kontrolya struktury i mekhanicheskikh svoystv stalnykh i chugunnykh izdeliy (obzor) [Magnetic devices for monitoring the structure and mechanical properties of steel and cast iron products (Review)]. Defektoskopiya, 1992, no. 10, pp. 3–35 (in Russ.).
  15. Vonsovskiy S.V., Mikheev M.N. Magnitnyy strukturnyy analiz [Magnetic structural analysis]. Industrial laboratory, 1957, no. 10, pp. 1221–1226 (in Russ.).
  16. Mikheev M.N., Gorkunov E.S. Svyaz magnitnykh svoystv so strukturnym sostoyaniem veshchestva – fizicheskaya osnova magnitnogo strukturnogo analiza (obzor) [Relationship of magnetic properties with the structural state of matter –physical basis of magnetic structural analysis (review)]. Defektoskopiya, 1981, no. 8, pp. 5–21 (in Russ.).
  17. Sandomirski S.G. Primenenie polyusnogo namagnichivaniya v magnitnom strukturnom analize (obzor) [Application of pole magnetization in magnetic structural analysis (review)]. Defektoskopiya, 2006, no. 9, pp. 36–64 (in Russ.).
  18. Sandomirski S.G. Raschet i analiz razmagnichivayushchego faktora ferromagnitnykh tel [Calculation and analysis of the demagnetizing factor of ferromagnetic bodies]. Minsk, Belorusskaya nauka Publ., 2015. 244 p. (in Russ.).
  19. Zagidulin R.V., Muzhitskiy V.F. K otsenke koertsitivnoy sily materiala po velichine polya ostatochnoy namagnichennosti [On the assessment of the coercive force of a material by the value of the remanent magnetization]. Industrial Laboratory. Diagnostics of Materials, 2005, vol. 71, no. 2, pp. 25–28 (in Russ.).
  20. Fedorishcheva E.E., Fridman L.A., Tabachnik V.P., Chernova G.S. Normalnaya sostavlyayushchaya ostatochnogo magnitnogo polya nad poverhnostyu massivnogo tela [The normal component of the remanent magnetic field above the surface of a massive body]. Defektoskopiya, 1982, no. 2, pp. 23–29 (in Russ.).
  21. Sandomirski S.G. Analiz chuvstvitelnosti pole– i gradientometricheskikh datchikov k koertsitivnoy sile materiala izdeliya s ploskoy poverkhnostyu posle polyusnogo namagnichivaniya [Analysis of sensitivity of field- and gradiometric sensors to the coercive force of the material of a product with a flat surface after pole magnetization]. Testing. Diagnostics, 2008, no. 5. pp. 31–41 (in Russ.).
  22. Sandomirski S.G., Tsukerman V.L., Linnik I.I., Sandomirskaya E.G. Universalnyy magnitnyy sortirovshchik i ego primenenie dlya resheniya zadach nerazrushayushchego kontrolya [Universal magnetic sorter and its application for solving non-destructive testing tasks]. Testing. Diagnostics, 2004, no. 8, pp. 27–31 (in Russ.).
  23. State Standard 9013–59 (ISO 6508–86). Metally. Metod izmereniya tverdosti po Rokvellu [Metals. Rockwell Hardness Test Method]. Moscow, Standartov Publ., 2001. 10 p. (in Russ.).
  24. State Standard R ISO 6507-1-2007. Metally i splavy. Izmerenie tverdosti po Vikkersu. Chast 1. Metod izmereniya [Metals and alloys. Vickers hardness measurement. Part 1. Measurement method]. Moscow, Standartinform Publ., 2008. 16 p. (in Russ.).
  25. ASTM E140 – 07. Standard Hardness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, and Scleroscope Hardness. 2007. 21 р. DOI: https://doi.org/10.1520/E0140-07.