Title of the article STRUCTURE AND PROPERTIES OF THE АК12М2МгН (AlSi12Cu2MgNi) PISTON ALLOY FORMED UNDER THE INFLUENCE OF A COMPLEX MODIFYING ADDITIVE OF FULLERENE-CONTAINING SOOT AND COPPER
Authors

KOMAROV Aleksandr I., Ph. D. in Eng., Head of the Laboratory of Modification Technologies of Engineering Materials, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

ORDA Dmitry V., Researcher of the Laboratory of Modification Technologies of Engineering Materials, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

ISKANDAROVA Donata O., Junior Researcher of the Laboratory of Modification Technologies of Engineering Materials, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">donatаThis email address is being protected from spambots. You need JavaScript enabled to view it.

In the section MATERIALS SCIENCE IN MECHANICAL ENGINEERING
Year 2021
Issue 2
Pages 73–80
Type of article RAR
Index UDK 669.046.52
DOI https://doi.org/10.46864/1995-0470-2021-2-55-73-80
Abstract The article presents the study results of the complex modification of eutectic silumin АК12М2МгН (AlSi12Cu2MgNi) with additives of fullerene-containing soot (FCS) and copper. It is shown that the effect on the alloy structure is caused by the introduction of carbon nanoparticles into the melt and is manifested in the dispersion of the structural phases and their uniform distribution in the casting volume. At the same time, the use of dispersed copper powder provides wetting of aluminum carbon particles with the melt and additional alloying of the melt. The formation of a dispersed structure leads to an increase in the mechanical and tribotechnical characteristics of the alloy: an increase in the ultimate strength (by 1.3–1.6 times) with a simultaneous increase in the relative elongation by up to 3 times, a significant decrease in the coefficient of friction (by 1.1–1.7 times) and the intensity of wear. The lowest coefficient of friction and high wear resistance are achieved at small fractions of FCS (0.05–0.1 wt.%) and the copper content in the modifier is not more than 0.5 wt.%.
Keywords fullerene-containing soot, copper powder, modification, aluminum-silicon alloys, structure, ultimate strength, wear resistance, coefficient of friction
  You can access full text version of the article.
Bibliography
  1. Vityaz P.A., Komarov V.I., Komarova V.I., Shipko A.A., Senyut V.T. Sozdanie nanostrukturirovannykh kompozitsionnykh modifikatorov dlya splavov alyuminiya [Creation of nanostructured composite modifiers for aluminium alloys]. Doklady of the National Academy of Sciences of Belarus, 2011, vol. 55, no. 5, pp. 91–96 (in Russ.).
  2. Krushenko G.G., Filkov M.A. Modifitsirovanie alyuminievykh splavov nanoporoshkami [Modification of aluminium alloys by nanopowders]. Nanotekhnika, 2007, vol. 12, no. 4, pp. 58–64 (in Russ.).
  3. Chernyshova T.A., Kalashnikov I.Y., Bolotova L.K. Tribologicheskie svoystva litykh alyumomatrichnykh kompozitov, modifitsirovannykh nanoporoshkami [Tribological properties of alumomatrix composites inoculated with nano-size high melting powders]. Metallurgiya mashinostroeniya, 2010, no. 2, pp. 21–26 (in Russ.).
  4. Suresh S.M., Mishra D., Srinivasan A., Arunachalam R.M., Sasikumar R. Production and characterization of micro and nano Al2O3 particle-reinforced LM25 aluminium alloy composites. ARPN journal of engineering and applied sciences, 2011, vol. 6, no. 6, pp. 94–98.
  5. Borodianskiy K., Zinigrad M. Mechanical properties and microstructure characterization of Al-Si cast alloys formation using carbide nanoparticles. Journal of materials sciences and applications, 2015, vol. 1, no. 3, pp. 85–90.
  6. Jiang D., Yu J. Fabrication of Al2O3/SiC/Al hybrid nanocomposites through solidification process for improved mechanical properties. Metals, 2018, no. 8(8). DOI: https://doi.org/10.3390/ met8080572.
  7. Vityaz P.A., Komarov A.I., Komarova V.I., Shipko A.A., Ovchinnikov V.V., Kovaleva S.A. Vliyanie fazovogo sostava nanostrukturirovannogo tugoplavkogo modifikatora na strukturu i tribotekhnicheskie svoystva splava AK12M2MgN [Effect of phase composition of nanostructured refractory modifier on structure and tribological behavior of AK12M2MgN alloy]. Trenie i iznos, 2013, vol. 34, no. 5, pp. 435–445 (in Russ.).
  8. Komarov A.I., Komarova V.I., Senyut V.T. Sposob polucheniya litogo kompozitsionnogo materiala na osnove alyuminievogo splava [Method of producing a molded composite material based on aluminum alloy]. Patent RB, no. 17840, 2013 (in Russ.).
  9. Komarov A.I., Komarova V.I., Orda D.V. Sintez karbido-korundovogo napolnitelya i ego vozdeystvie na strukturu i svoystva porshnevogo splava AK12M2MgN [Synthesis of carbide-corund filler and its impact on the structure and properties of piston GK-AlSi12(Cu) alloys]. Mechanics of machines, mechanisms and materials, 2016, no. 1(34), pp. 81–86 (in Russ.).
  10. Komarov A.I., Komarova V.I., Shipko A.A., Orda D.V. Vozdeystvie sinteziruemoy nanokompozitsii SiC-Al2O3 na strukturoobrazovanie i tribotekhnicheskie svoystva kompozita na osnove porshnevogo splava AK12M2MgN [Impact of synthesized SiC–Al2O3 nanocomposite on the structure and tribomechanical properties of AK12M2MgN piston alloy]. Mechanics of machines, mechanisms and materials, 2017, no. 1(38), pp. 71–78 (in Russ.).
  11. Znamenskii L.G., Ivochkina O.V., Rechkalov I.V. Rafinirovanie i modifitsirovanie splavov retsiklingovymi nanostrukturirovannymi materialami [Refining and modification of alloys by nanostructured recycling materials]. Bulletin of the South Ural State University. Series “Metallurgy”, 2015, vol. 15, no. 4, pp. 68–72 (in Russ.).
  12. Sahed D.A. Aluminum silicon carbide and aluminum graphite particulate composites. Journal of engineering and applied sciences, 2011, vol. 6, no. 10, pp. 41–46.
  13. Stojanovi B., Babi M., Mitrovi S., Vencl A., Miloradovi N., Panti M. Tribological characteristics of aluminium hybrid composites reinforced with silicon carbide and graphite. A review. Journal of the Balkan Tribological Association, 2013, vol. 19, no. 1, pp. 83–96.
  14. Izotov V.A., Chibirnova Yu.V. Sposob modifitsirovaniya alyuminiya i alyuminievo-kremnievykh splavov (siluminov) uglerodom [Method of modifying aluminum and aluminum-silicon alloys (silumins) with carbon]. Patent RF, no. 2538850, 2015 (in Russ.).
  15. Komarov A.I., Komarova V.I., Orda D.V., Iskandarova D.O. Vliyanie kompleksnogo modifitsirovaniya uglerodnymi nanotrubkami i medyu na strukturu i svoystva silumina AK12M2MgN [Influence of co-modification by carbon nanotubes and copper on the structure and properties of silumin AK12M2MgN]. Aktualnye voprosy mashinovedeniya, 2017, iss. 6, pp. 369–371 (in Russ.).
  16. Komarov A.I., Komarova V.I., Orda D.V., Iskandarova D.O. Sposob modifitsirovaniya alyuminiya ili alyuminiy-kremnievykh splavov [Method of modifying aluminum or aluminum-silicon alloys]. Patent RB, no. 22644, 2019 (in Russ.).
  17. State Standard 4960-2009. Poroshok mednyy elektroliticheskiy. Tekhnicheskie usloviya [Electrolytic copper powder. Technical specifications]. Moscow, Standartinform Publ., 2009. 18 p. (in Russ.).
  18. State Standard 801-78. Stal podshipnikovaya. Tekhnicheskie usloviya [Bearing steel. Technical specifications]. Moscow, IPK standartov Publ., 2004. 26 p. (in Russ.).
  19. State Standard 20799-88. Masla industrialnye. Tekhnicheskie usloviya [Industrial oils. Technical specifications]. Moscow, Standartinform Publ., 2005. 7 p. (in Russ.).