Title of the article METHOD OF SELECTING THE OPERATION PARAMETERS OF ELECTRIC SPINDLE WITH AEROSTATIC SUPPORTS FOR SEPARATION OF SEMICONDUCTOR PLATES TO CRYSTALS. PARTS 2–3
Authors

KOVENSKY Alexander E., Head of STC-27, Planar OJSC, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

BASINIUK Vladimir L., D. Sc. in Eng., Prof., Chief of the R&D Center “Mechanical Engineering Technologies and Processing Equipment” — Head of the Laboratory of Gearing Systems and Processing Equipment, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

VOLKOTRUB Ryta E., Researcher of the Laboratory of Gearing Systems and Processing Equipment, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section DYNAMICS, DURABILITY OF VEHICLES AND STRUCTURES
Year 2021
Issue 3(56)
Pages 25–41
Type of article RAR
Index UDK 621.81
DOI https://doi.org/10.46864/1995-0470-2021-3-56-25-41
Abstract The article presents the results of studies of the shaft oscillation processes of a precision horizontal highspeed electric spindle with aerostatic radial and axial supports, used at Planar OJSC in equipment for separation of semiconductor plates into crystals. The studies were carried out using the developed mathematical models that take into account the design features of these electric spindles, including the cantilever mounting of the cutting tool, the imbalance of the diamond disc with the mandrel and the mass ratio of the main components of the electric spindle, as well as the results of their full-scale tests. Based on the analysis of the data obtained, regularities are shown that connect the amplitude values of the oscillations of the electric spindle shaft with the imbalance of the diamond disc with the mandrel and the rotational speed of the electric spindle, which made it possible to propose engineering dependences for choosing the permissible values of the imbalance and rational, from the standpoint of resonance conditions and permissible shaft oscillations, rotational speed of the electric spindle. Recommendations have been developed for the creation of a system for monitoring and active control of the parameters and functioning of the electric spindle in the process of separating semiconductor plates into crystals, which make it possible to use the resonant mode of radial oscillations to improve cutting conditions, excluding direct contact of the working surfaces of aerostatic supports, their seizure and loss of performance of the electric spindle. The article presents a method of selecting the operation parameters of a high-speed precision horizontal electric spindle with aerostatic radial and axial supports and a cantilever mounting of a diamond cutting disc. It is based on the analysis of the simulation results of shaft forced oscillations and data on the shaft oscillations during the operation of the electric spindle with different rotation frequencies and imbalances. The results obtained can be used to monitor shaft oscillations during the operation of the electric spindle, while the high operation efficiency of which is achieved by adaptive control of rotation frequencies taking into account the amplitudes of these oscillations.
Keywords aerostatic supports, microelectronics, forced vibrations, cutting, electric spindle, adaptive control, vibration, monitoring
  You can access full text version of the article.
Bibliography
  1. Zverev A.I. Mnogokriterialnoe proektirovanie shpindelnykh uzlov na oporakh kacheniya. Avtoref. diss. dokt. tekhn. nauk [Multi-criteria design of spindle assemblies on rolling bearings. Extended Abstract of D. Sc. Thesis]. Moscow, 1997. 45 p. (in Russ.).
  2. Dadaev S.G. Razrabotka teoreticheskikh osnov i metodov rascheta dinamicheskikh kharakteristik profilirovannykh spiralnymi kanavkami gazodinamicheskikh opor. Avtoref. diss. dokt. tekhn. nauk [Development of theoretical foundations and methods for calculating the dynamic characteristics of gas-dynamic supports profiled with spiral grooves. Extended Abstract of D. Sc. Thesis]. Chelyabinsk, 2002. 359 p. (in Russ.).
  3. Zvonarev P.N. Razrabotka metoda rascheta radialnykh uprugo gazodinamicheskikh podshipnikov s predvaritelno napryazhennymi lepestkami dlya malykh turbomashin nizkotemperaturnykh ustanovok. Avtoref. diss. kand. tekhn. nauk [Development of a method for calculating radial elastic gas-dynamic bearings with prestressed lobes for small turbomachines of low-temperature installations. Extended Abstract of Ph. D. Thesis]. Moscow, 2005. 201 p. (in Russ.).
  4. Kosmynin A.V., Shchetinin V.S., Ivanova I.A. Using magnetic force in the gas-static bearings of high-speed spindles. Russian engineering research, 2009, vol. 29, no. 5, pp. 456–458.
  5. Shchetinin V.S. Nauchnoe obosnovanie sozdaniya i razrabotka vysokoskorostnykh shpindelnykh uzlov na gazomagnitnykh oporakh metallorezhushchikh stankov. Avtoref. diss. dokt. tekhn. nauk [Scientific substantiation of the creation and development of high-speed spindle units on gas-magnetic bearings of metal-cutting machines. Extended Abstract of D. Sc. Thesis]. Komsomolsk-on-Amur, 2011. 35 p. Available at: https://www. dissercat.com/content/nauchnoe-obosnovanie-sozdaniya-i- raz-rabotka-vysokoskorostnykh-shpindelnykh-uzlov-na-gazomagn (accessed 02 June 2020) (in Russ.).
  6. Ivanova N.A., Shchetinin V.S., Blinkov S.S. Metod rascheta gazomagnitnogo podshipnika vysokoskorostnogo shpindelnogo uzla [Method for calculating a gas magnetic bearing of a highspeed spindle assembly]. Omsk scientific bulletin, 2011, no. 1, pp. 63–65 (in Russ.).
  7. Yamada H., Suzuki N. Development of magnetic aerostatic hybrid spindle. NTN, Technical review, 2001, no. 69, pp. 21–26.
  8. Khvostikov A.S., Kosmynin A.V., Shchetinin V.S., Smirnov A.V., Blinkov S.S. Sovershenstvovanie ekspluatatsionnykh kharakteristik vysokoskorostnykh shpindelnykh uzlov na beskontaktnykh oporakh [Improving the operational characteristics of high-speed spindle assemblies on contactless supports]. Modern high technologies, 2010, no. 9, p. 183 (in Russ.).
  9. Kosmynin A.V. Sovershenstvovanie kharakteristik gazovykh opor vysokoskorostnykh shpindelnykh uzlov metalloobrabatyvayushchego oborudovaniya. Diss. dokt. tekhn. nauk [Improvement of the characteristics of gas supports of high-speed spindle assemblies of metalworking equipment. D. Sc. Thesis]. Komsomolsk-on-Amur, 2004. 40 p. Available at: https://www. dissercat.com/content/sovershenstvovanie-kharakteristik-gazovykh- opor-vysokoskorostnykh-shpindelnykh-uzlov-metallo read (accessed 02 June 2020) (in Russ.).
  10. Ivanova N.A. Sovershenstvovanie kharakteristik opor vysokoskorostnykh shpindelnykh uzlov metallorezhushchikh stankov. Avtoref. diss. kand. tekhn. nauk [Improvement of characteristics of supports of high-speed spindle nodes of metal- cutting machine tools. Extended Abstract of Ph. D. Thesis]. Komsomolsk-on-Amur, 2011. 23 p. Available at: tekhnosfera.com/sovershenstvovanie-harakteristik- beskontaktnyh-opor-vysokoskorostnyh-shpindelnyh-uzlov-metallorezhuschih-stankov (accessed 02 April 2021) (in Russ.).
  11. Breshev V.E., Breshev A.V. Privody mashin na reguliruemykh konicheskikh aerostaticheskikh oporakh [Machine drives on adjustable conical aerostatic supports]. Lugansk, Luganskiy gosudarstvennyy universitet im. V. Dalya Publ., 2016. 200 p. (in Russ.).
  12. Kurzakov A.S. Razrabotka radialnykh aerostaticheskikh opor s plavayushchimi regulyatorami. Avtoref. diss. kand. tekhn. nauk [Development of radial aerostatic supports with floating controllers. Extended Abstract of Ph. D. Thesis]. Krasnoyarsk, 2002. 211 p. Available at: https://www.dissercat.com/content/ razrabotka-radialnykh-aerostaticheskikh-opor-s-plavayushchimi- regulyatorami (accessed 02 April 2021) (in Russ.).
  13. Nosko P., Breshev V., Fil P. The concept of creating non-contact drive for working bodies in machines of various purpose. TEKA Commission of motorization in agriculture, 2008, vol. VIIIA, pp. 126–133.
  14. Klimenkov Yu.S. Gazostaticheskie opory s sistemoy stabilizatsii polozheniya vala i rasshirennym diapazonom nagruzok. Avtoref. diss. kand. tekhn. nauk [Gasostatic bearings with a system for stabilizing the shaft position and an extended load range. Extended Abstract of Ph. D. Thesis]. Vladimir, 2009. 176 p. Available at: http://www.dslib.net/mashyno-vedenie/ gazostaticheskie-opory-s-sistemoj-stabilizacii-polozhenija-vala- i-rasshirennym.html (accessed 02 April 2021) (in Russ.).
  15. Kosmynin A.V., Shchetinin V.S. Carrying capacity of gas-magnetic bearings for high-speed spindles. Russian engineering research, 2010, vol. 30, no. 12, pр. 1252–1253.
  16. Kosmynin A.V., Shchetinin V.S. Influence of the magnetic force in gas-magnetic bearings on the operation of high-speed spindles in metalworking equipment. Russian engineering research, 2010, vol. 30, no. 5, pp. 451–452.
  17. Shalomov V.I. O vliyanii nekotorykh parametrov gazovykh opor na vykhodnye kharakteristiki shpindelnykh uzlov shlifovalnykh stankov [On the effect of some parameters of gas bearing on the output characteristics of spindle units grinding machines]. Assembling in mechanical engineering and instrument-making, 2012, no. 3, pp. 32–36 (in Russ.).
  18. Khvostikov A.S., Shchetinin V.S. Primenenie veyvlet-analiza dlya diagnostiki metodom akusticheskoy emissii pri silnom zashumlenii signala [Application of wavelet analysis for diagnostics by the method of acoustic emission in case of strong signal noise]. Nauchnoe obozrenie, 2007, no. 6, pp. 63–65 (in Russ.).
  19. Gribinichenko M.V., Kurensky A.V., Fershalov Yu.Ya. Obobshchennaya matematicheskaya model osevykh podshipnikov s gazovoy smazkoy elementov sudovykh energeticheskikh ustanovok [The generalized mathematical model of axial bearings with gas lubrication of ship power plant elements]. Marine intellectual technologies, 2011, special issue, no. 1, pp. 21–23 (in Russ.).
  20. Guskov A.M., Poshekhonov R.A. Segmentnaya model dlya rascheta sfericheskikh aerostaticheskikh opor [Segment model of spherical aerostatic bearings]. Science & education, 2011, no. 12. Available at: http://www.technomag.edu.ru/doc/286475.html (accessed 17 March 2021) (in Russ.).
  21. Kovensky A.E., Basiniuk V.L., Hlazunova H.A. Monitoring i upravlenie parametrami kolebaniy vysokoskorostnogo elektroshpindelya na aerostaticheskikh podshipnikovykh oporakh [Monitoring and control of oscillations properties of high-speed electric spindle on aerostatic bearing supports]. Aktualnye voprosy mashinovedeniya, 2019, iss. 8, pp. 154–158 (in Russ.).
  22. Poshekhonov R.A., Lapshin V.V., Zaharevich E.M., Kirianov V.P. Udarnaya diagnostika aerostaticheskogo shpindelnogo uzla so sfericheskimi oporami [Impact diagnostic of aerostatic spindle unit with aerostatic bearings]. Science & education, 2014, no. 7. Available at: http://engineering-science.ru/ doc/717582.html (accessed 17 March 2021) (in Russ.).
  23. Lektsii po fizike. Polnyy kurs lektsiy po fizike [Physics lectures. A complete course of lectures on physics]. Available at: http:// physics-lectures.ru/mexanicheski-kolebaniya-i-volny/7-8-vynuzhdennye- kolebaniya (accessed 15 April 2021) (in Russ.).
  24. Beschastnykh V.N. Razrabotka metodov rascheta i eksperimentalnoe opredelenie kharakteristik radialnykh segmentnykh gazovykh podshipnikov dlya tyazhelykh rotorov GTU. Avtoref. diss. kand. tekhn. nauk [Development of a calculation method and experimental determination of the characteristics of radial segmental gas bearings for heavy rotors of gas turbine units. Extended Abstract of Ph. D. Thesis]. Moscow, 2011. 144 p. (in Russ.).
  25. Kodnyanko V.A. Tekhnologiya i kompyuternaya sreda avtomatizatsii modelirovaniya, rascheta i issledovaniya gazostaticheskikh opor. Avtoref. diss. dokt. tekhn. nauk [Technology and computer environment for automation of modeling, calculation and research of gas-static supports. Extended Abstract of D. Sc. Thesis]. Krasnoyarsk, 2005. 339 p. (in Russ.).