Title of the article STRUCTURE OF COMMERCIAL TITANIUM SUBJECTED TO LOW-TEMPERATURE ION NITRIDING
Authors

KUKAREKO Vladimir A., D. Sc. in Phys. and Math., Prof., Chief of the Center of Structural Research and Tribo-Mechanical Testing of Materials and Mechanical Engineering Products of Collective Use, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

KONSTANTINOV Valeriy M., D. Sc. in Eng., Prof., Head of the Department “Material Science”, Belarusian National Technical University, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

VERESHCHAK Nikita A., Engineer of the Department “Material Science”, Belarusian National Technical University, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

GRIGORCHIK Aleksandr N., Ph. D. in Eng., Deputy Chief of the Center of Structural Research and Tribo-Mechanical Testing of Materials and Mechanical Engineering Products of Collective Use, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus

In the section MATERIALS SCIENCE IN MECHANICAL ENGINEERING
Year 2022
Issue 1(58)
Pages 48–55
Type of article RAR
Index UDK 621.785.5
DOI https://doi.org/10.46864/1995-0470-2022-1-58-48-55
Abstract The structural-phase state of commercial titanium of grades ВТ1-00 (VT1-00) and ВТ1-0 (VT1-0) has been studied in the initial state and after various types of low-temperature ion nitriding. In the initial state, the VT1-00 and VT1-0 alloys have a single-phase α-Ti structure with a hexagonal close-packed crystal lattice. The hardness of titanium is 140–150 HV 10. It has been shown that ion-beam nitriding of VT1-00 alloy at low temperatures of 350 and 450 °С leads to the formation of thin (up to 5 μm) nitrogen-hardened layers with a hardness of 160–180 HV 0.05. As a result of ion implantation at temperatures of 500 and 550 °C, a nitrogen-modified layer with a microhardness of 190–220 HV 0.05 is formed in the surface layers of the VT1-00 titanium alloy, containing a solid solution of nitrogen in the α-Ti matrix phase. Nitrogen implantation of the VT1-00 alloy at a temperature of 620 °C leads to the formation of titanium nitrides TiN0.26, ε-Ti2N, η-Ti3N2-x in the surface layer of titanium alloy. The microhardness of VT1-00 titanium treated with nitrogen ions at 620 °C increases to 360 HV 0.05. In the case of ion-plasma nitriding (IPN) of VT1-0 titanium at 550 °C for 5 h, a nitrogen-modified layer up to 20 μm deep is recorded in its surface layer, containing isomorphic phases: α-Ti and titanium nitride TiN0.26. The microhardness of the VT1-0 titanium alloy subjected to IPN is 190 HV 0.01.
Keywords commercial titanium, ion-beam nitriding, ion-plasma nitriding, modified layer, solid solution, titanium nitrides, microhardness
  You can access full text version of the article.
Bibliography
  1. Belov A.F., et al. Stroenie i svoystva aviatsionnykh materialov [Structure and properties of aviation materials]. Moscow, Metallurgiya Publ., 1989. 368 p. (in Russ.).
  2. Epple M. Biomaterialien und Biomineralisation. Eine Einführung für Naturwissenschaftler, Mediziner und Ingenieure. Wiesbaden, Vieweg+Teubner Verlag, 2003. 162 p.
  3. Sharkeev Yu.P., Kukareko V.A., Eroshenko A.Yu., Kopylov V.I., Bratchikov A.D., Legostaeva E.V., Kononov A.G., Tiu V.S Zakonomernosti formirovaniya submikrokristallicheskikh struktur v titane, podvergnutom intensivnomu plasticheskomu deformirovaniyu po razlichnym skhemam [Regularities of the formation of submicrocrystalline structures in titanium subjected to intense plastic deformation according to various schemes]. Physical mesomechanics, 2006, vol. 9, special issue, pp. 129–132 (in Russ.).
  4. Pobal I.L. Metody vysokoenergeticheskoy obrabotki materialov. Opyt osvoeniya v promyshlennosti [Methods of high energy treatment of materials. Experience of development in the industry]. Vestnik Brestskogo gosudarstvennogo tekhnicheskogo universiteta. Mashinostroenie, 2018, no. 4(112), pp. 64–68 (in Russ.).
  5. Oleshuk I.G., Drobov A.N., Pobol I.L., Bosyakov M.N. Issledovanie vliyaniya sostava gazovoy sredy pri ionno-plazmennom azotirovanii titanovykh splavov na glubinu uprochnennykh sloev [Investigation of the influence of gas composition on the depth of hardened layers obtained by ion-plasma nitriding of titanium alloys]. Sovremennye metody i tekhnologii sozdaniya i obrabotki materialov, 2018, pp. 201–211 (in Russ.).
  6. Pogrelyuk I.N., Fedirko V.N., Lukyanenko A.G., Trush V.S., Pobol I.L., Nazarova O.I. Inzheneriya poverkhnosti titanovykh splavov v gazovykh sredakh [Surface engineering of titanium alloys in gaseous media]. Sovremennye metody i tekhnologii sozdaniya i obrabotki materialov, 2017, pp. 271–283 (in Russ.).
  7. Lakhtin Yu.M., Kogan Ya.D., Shpis G.-I., Bemer Z. Teoriya i tekhnologiya azotirovaniya [Theory and technology of nitriding]. Moscow, Metallurgiya Publ., 1991. 320 p. (in Russ.).
  8. Belyy A.V., Kukareko V.A., Pateyuk A. Inzheneriya poverkhnostey konstruktsionnykh materialov kontsentrirovannymi potokami ionov azota [Engineering of surfaces of structural materials by concentrated streams of nitrogen ions]. Minsk, Belorusskaya nauka Publ., 2007. 244 p. (in Russ.).
  9. Byeli A.V. Vysokointensivnaya nizkoenergeticheskaya implantatsiya ionov azota [High-intensity low-energy implantation of nitrogen ions]. Physical mesomechanics, 2002, vol. 5, no. 1, p. 95 (in Russ.).
  10. State Standard 19807-91. Titan i splavy titanovye deformiruemye. Marki [Wrought titanium and titanium alloys. Grades]. Minsk, IPK standartov Publ., 2001. 3 p. (in Russ.).
  11. Kapczinski M.P., Gil C., Kinast E.J., dos Santos C.A. Surface modification of titanium by plasma nitriding. Materials research, 2003, vol. 6, no. 2, pp. 265–271.
  12. Muraleedharan T.M., Meletis E.I. Surface modification of pure titanium and Ti-6A1-4V by intensified plasma ion nitriding. Thin solid films, 1992, vol. 221, iss.1–2, pp. 104–113. DOI: https://doi.org/10.1016/0040-6090(92)90802-I.
  13. Da Silva S.L.R., Kerber L.O., Amaral L., dos Santos C.A. X-ray diffraction measurement of plasma-nitrided Ti-6Al-4V. Surface and coatings technology, 1999, vol. 116–119, pp. 342–346. DOI: https://doi.org/10.1016/S0257-8972(99)00204-2.
  14. Belyy A.V., Kukareko V.A., Bilenko E.G. Struktura i fiziko-mekhanicheskie svoystva stali 40Kh13, podvergnutoy ionno-luchevoy obrabotke azotom [Structure and physico-mechanical properties of 40Kh13 steel subjected to ion-beam nitrogen treatment]. Trenie i iznos, 2003, vol. 24, no. 5, pp. 497–502 (in Russ.).