Title of the article MODERN TRENDS IN THE DEVELOPMENT OF METHODS AND MEANS OF EXPERIMENTAL MECHANICS. PART 2
Authors

BASINIUK Vladimir L., D. Sc. in Eng., Prof., Chief of the R&D Center “Mechanical Engineering Technologies and Processing Equipment” — Head of the Laboratory of Gearing Systems and Processing Equipment, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

BOGDANOVICH Alexander V., D. Sc. in Eng., Assoc. Prof., Professor of the Department of Theoretical and Applied Mechanics, Belarusian State University, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

YELOVOY Oleg M., Ph. D. in Eng., Deputy Director General for Science and Research, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section TRIBO-FATIGUE SYSTEMS MECHANICS
Year 2022
Issue 1(58)
Pages 71–82
Type of article RAR
Index UDK 539.4
DOI https://doi.org/10.46864/1995-0470-2022-1-58-71-82
Abstract The article considers a number of new directions in the development of methods and means of experimental mechanics. They are: the unification of test and calculation methods; the development of equipment and test methods in extreme conditions; the widespread use of acoustic emission methods and video recording during testing; the creation and development of equipment and methods for complex testing (for example, wear-fatigue) of materials and products. The achievements of Belarusian scientists are also noted in the field of experimental mechanics of contact interaction, including: an adhesiometer for measuring the molecular interaction of technical surfaces; a millitribometer for measuring friction forces under loads which are characteristic of a precision contact; an onboard tribometer for testing materials for friction and wear in extreme conditions of the action of space factors.
Keywords strength, durability, friction, testing, mechanical properties
  You can access full text version of the article.
Bibliography
  1. Basiniuk V.L., Bogdanovich A.V., Yelovoy O.M. Sovremennye tendentsii v razvitii metodov i sredstv eksperimentalnoy mekhaniki. Chast 1 [Modern trends in the development of methods and means of experimental mechanics. Part 1]. Mechanics of machines, mechanisms and materials, 2021, no 4(57), pp. 78–86 (in Russ.).
  2. Makhutov N.А., Gadenin M.M. Unifikatsiya metodov rascheta i ispytaniy na prochnost, resurs i treshchinostoykost [Unification of the calculation methods and tests for strength, life time and crack resistance]. Zavodskaya laboratoriya. Diagnostika materialov, 2019, vol. 85, no. 10, pp. 47–54. DOI: https://doi.org/10.26896/1028-6861-2019-85-10-47-54 (in Russ.).
  3. Makhutov N.А., Gadenin M.M. Razvitie fundamentalnykh i prikladnykh issledovaniy v oblasti mashinostroeniya s ispolzovaniem kriteriev prochnosti, resursa, treshchinostoykosti i bezopasnosti [Development of fundamental and applied researches in the field of machine sciences using strength, safe life, survivability and safety criteria]. Zavodskaya laboratoriya. Diagnostika materialov, 2018, vol. 84, no. 10, pp. 41–52. DOI: https://doi.org/10.26896/1028-6861-2018-84-10-41-52 (in Russ.).
  4. Mostovoy G.E., Karpov A.P. Osobennosti mekhanicheskikh ispytaniy uglerodnykh i uglerod-uglerodnykh kompozitsionnykh materialov pri temperaturakh do 3000 °С [Features of mechanical testing of carbon and carbon-carbon composite materials at a temperature up to 3000°C]. Zavodskaya laboratoriya. Diagnostika materialov, 2017, vol. 83, no. 5, pp. 56–61 (in Russ.).
  5. Matvienko Yu.G., Vasil’ev I.E., Chernov D.V. Issledovanie kinetiki razrusheniya odnonapravlennogo laminata s primeneniem akusticheskoy emissii i videoregistratsii [Study of the fracture kinetics of a unidirectional laminate using acoustic emission and video recording]. Zavodskaya laboratoriya. Diagnostika materialov, 2019, vol. 85, no. 11, pp. 45–61. DOI: https://doi.org/10.26896/1028-6861-2019-85-11-45-61 (in Russ.)
  6. Saeedifar M., Najafabadi M.A., Zarouchas D., Toudeshky H.H., Jalalvand M. Clustering of interlaminar and intralaminar damages in laminated composites under indentation loading using Acoustic Emission. Composites. Part B: Engineering, 2018, vol. 144, pp. 206–219. DOI: https://doi.org/10.1016/j.compositesb.2018.02.028.
  7. Brunner A.J. Acoustic emission analysis for identification of damage mechanisms in fiber-reinforced polymer composites and structural integrity assessment: Selected examples and challenges. 8th International conference on acoustic emission “Progress in acoustic emission XVIII”. Kyoto, 2016, pp. 287–292.
  8. Mokritskii B.Ya., Usova T.I., Ershova T.B., Mokritskaya E.B. Ispolzovanie videoizmeritelnykh mashin dlya issledovaniya treshchin v materialakh s maloy otrazhatelnoy sposobnostyu [Results of using video measuring machines in the study of cracks in the materials having a low reflectance]. Zavodskaya laboratoriya. Diagnostika materialov, 2018, vol. 84, no. 5, pp. 41–44. DOI: https://doi.org/10.26896/1028-6861-2018-84-5-41-44 (in Russ.).
  9. Zhmailik V.A., et al. SI-series machines for wear-fatigue tests. Gomel, Gomselmash Publ., 2009. 55 p.
  10. Sosnovskiy L.A. Mekhanika iznosoustalostnogo povrezhdeniya [Mechanics of wear-fatigue damage]. Gomel, Belorusskiy gosudarstvenyy universitet transporta Publ., 2007. 434 p. (in Russ.).
  11. Sosnovskiy L.A., Troshchenko V.T., Makhutov N.A., Gao W.-Z., Bogdanovich A.V., Sherbakov S.S. Iznosoustalostnye povrezhdeniya i ikh prognozirovanie (tribofatika) [Wear-fatigue damage and its prediction (tribo-fatigue)]. Gomel, Kiev, Moscow, Wuhan, Tribofatika Publ., 2001. 170 p. (in Russ.).
  12. Sherbakov S.S., Sosnovskiy L.A. Mekhanika tribofaticheskikh sistem [Mechanics of tribo-fatigue systems]. Minsk, Belorusskiy gosudarstvennyy universitet Publ., 2010. 407 p. (in Russ.).
  13. Bogdanovich A.V. Prognozirovanie predelnykh sostoyaniy silovykh sistem [Predicting the limit states of active systems]. Grodno, Grodnenskiy gosudarstvennyy universitet Publ., 2008. 372 p. (in Russ.).
  14. Sosnovskiy L.А., Bogdanovich А.V., Yelovoy O.M., Tyurin S.А., Komissarov V.V., Sherbakov S.S. Methods and main results of Tribo-Fatigue tests. International journal of fatigue, 2014, vol. 66, pp. 207–219. DOI: https://doi.org/10.1016/j.ijfatigue.2014.04.006.
  15. Sosnovskiy L.A., Makhutov N.А. Iznosoustalostnye ispytaniya [Wear-fatigue tests]. Mashinostroenie. Т. II-1. Fiziko-mekhanicheskie svoystva. Ispytaniya metallicheskikh materialov, 2010, pp. 354–385 (in Russ.).
  16. Sosnovskiy L.A., Sherbakov S.S., Bogdanovich A.V. Sovremennaya nauka i multidistsiplinarnaya sistema obrazovanie-nauka-proizvodstvo: nekotorye dostizheniya [Modern science and a multidisciplinary education-science-production system: some achievements]. Teoreticheskaya i prikladnaya mekhanika, 2018, iss. 33, pp. 3–10 (in Russ.).
  17. State Standard 30754-2001. Tribofatika. Metody iznosoustalostnykh ispytaniy. Ispytaniya na kontaktno-mekhanicheskuyu ustalost [Tribo-fatigue. Wear-fatigue test methods. Mechano-rolling fatigue tests]. Minsk, Mezhgosudarstvennyy sovet po standartizatsii, metrologii i sertifikatsii Publ., 2002. 32 p. (in Russ.).
  18. Standard of Belarus STB 1233-2000. Tribofatika. Metody iznosoustalostnykh ispytaniy. Uskorennye ispytaniya na kontaktno-mekhanicheskuyu ustalost [Tribo-fatigue. Wear-fatigue test methods. Accelerated mechano-rolling fatigue tests]. Minsk, Gosstandart Publ., 2000. 16 p. (in Russ.).
  19. Standard of Belarus STB 1448–2004. Tribofatika. Metody iznosoustalostnykh ispytaniy. Uskorennye ispytaniya na friktsionno-mekhanicheskuyu ustalost [Tribo-fatigue. Wear-fatigue test methods. Accelerated mechano-sliding fatigue tests]. Minsk, Gosstandart Publ., 2004. 20 p. (in Russ.).
  20. Standard of Belarus STB 1758–2007. Tribofatika. Metod sovmeshchennykh ispytaniy na izgibnuyu i kontaktnuyu ustalost materialov zubchatykh koles [Tribo-fatigue. Method of combined tests for bending and contact fatigue of gear materials]. Minsk, Gosstandart Publ., 2007. 52 p. (in Russ.).
  21. State Standard 30755–2001. Tribofatika. Mashiny dlya iznosoustalostnykh ispytaniy. Obshchie tekhnicheskie trebovaniya [Tribo-fatigue. Wear-fatigue testing machines. General technical requirements]. Minsk, Mezhgosudarstvennyy sovet po standartizatsii, metrologii i sertifikatsii Publ., 2002. 8 p. (in Russ.).
  22. Bogdanovich A.V., Sherbakov S.S., Marmysh D.E. Laboratornyy praktikum po eksperimentalnoy mekhanike [Laboratory workshop on experimental mechanics]. Minsk, Belorusskiy gosudarstvennyy universitet Publ., 2017. 107 p. (in Russ.).
  23. Grigoriev A.Ya., Dubravin A.M., Kovalev A.V., Kovaleva I.N., Komkov O.Yu., Myshkin N.K. Izmerenie kontaktnoy adgezii i attraktsionnogo vzaimodeystviya tekhnicheskikh poverkhnostey [Measurement of contact adhesion and atration between engineering surfaces]. Trenie i iznos, 2003, vol. 24, no. 4, pp. 405–412 (in Russ.).
  24. Grigoriev A.Ya., Kovaliova I.N., Myshkin N.K. Trenie monomolekulyarnykh samosobirayushchikhsya pokrytiy shchetochnogo tipa [Friction of brush-like self-assembled monomolecular layers]. Trenie i iznos, 2008, vol. 29, no. 6, pp. 596–603 (in Russ.).
  25. Grigoriev A.Ya. Pribory i metody issledovaniya kontaktnogo vzaimodeystviya tverdykh tel [Devices and methods of investigations of contact interaction of solids]. Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 2018, vol. 63, no. 1, pp. 53–67. DOI: https://doi.org/10.29235/1561-8358-2018-63-1-53-67 (in Russ.).
  26. Grigoriev A.Ya., Gutsev D.M., Zozulya A.P., Kovaliova I.N., Kudritskii V.G., Myshkin N.K., Semenyuk M.S. Vozvratno-postupatelnyy millitribometer МТU-2К7 [Reciprocating MTU-2K7 millitribometer]. Trenie i iznos, 2014, vol. 35, no. 6, pp. 664–669 (in Russ.).