Title of the article FINITE ELEMENT MODELING OF THE PROBLEM OF STRETCHING A MATERIAL WITH ZONES OF ALTERED STRUCTURE
Authors

VERAMEICHYK Andrei I., Ph. D. in Phys. and Math., Assoc. Prof., Senior Researcher of the Test Center, Brest State Technical University, Brest, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

NERODA Mikhail V., Ph. D. in Eng., Assoc. Prof., First Vice-Rector, Brest State Technical University, Brest, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

KHOLODAR Boris G., Ph. D. in Eng., Assoc. Prof., Senior Researcher of the Research Department, Brest State Technical University, Brest, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section MECHANICS OF DEFORMED SOLIDS
Year 2022
Issue 3(60)
Pages 77–84
Type of article RAR
Index UDK 004.94:620.172
DOI https://doi.org/10.46864/1995-0470-2022-3-60-77-84
Abstract The article considers computer simulation of tensile tests of a rectangular cross-section rod with zones formed during heat treatment by a moving highly concentrated heat source, the characteristics of which differ from the properties of the base material. Based on the results of finite element modeling, the stress-strain state of a rod with one or more zones of altered structure along its entire length and on part of the length is investigated. The stress concentration coefficients in the vicinity of the treatment zones are determined.
Keywords mechanical characteristics of the material, stress concentration coefficient, finite element method, local impact, material structure, stress intensity
  You can access full text version of the article.
Bibliography
  1. Muskhelishvili N.I. Nekotorye osnovnye zadachi matematicheskoy teorii uprugosti [Some basic problems of the mathematical theory of elasticity]. Moscow, Nauka Publ., Glavnaya redaktsiya fiziko-matematicheskoy literatury Publ., 1966. 708 p. (in Russ.).
  2. Neuber H. Kerbspannungslehre: Grundlagen für genaue Spannungsrechnung. Berlin, Springer-Verlag Berlin Heidelberg GmbH, 1937.
  3. Savin G.N. Kontsentratsiya napryazheniy okolo otverstiy [Stress concentration near holes]. Moscow, Leningrad, Gosudarstvennoe izdatelstvo tekhniko-teoreticheskoy literatury Publ., 1951. 496 p. (in Russ.).
  4. Aleksandrov A.Ya., et al. Prochnost, ustoychivost, kolebaniya. Tom 2 [Strength, stability, fluctuations. Volume 2]. Moscow, Mashinostroenie Publ., 1968. 463 p. (in Russ.).
  5. Spravochnik po koeffitsientam intensivnosti napryazheniy [Handbook of stress intensity coefficients]. Moscow, Mir Publ., 1990. Vol. 1, 447 p., vol. 2, 453 p. (in Russ.).
  6. Cherepanov G. P. Mekhanika khrupkogo razrusheniya [Mechanics of brittle fracture]. Moscow, Nauka Publ., 1974. 640 p. (in Russ.).
  7. Berezhnitskiy L.T., Delyavskiy M.V., Panasyuk V.V. Izgib tonkikh plastin s defektami tipa treshchin [Bending of thin plates with defects such as cracks]. Kiev, Nauchnaya mysl Publ., 1979. 400 p. (in Russ.).
  8. Peterson R.E. Stress concentration factors. New York, London, Sydney, Toronto, John Wiley and Sons, 1974.
  9. Bely A.V., Makushok E.M., Pobol I.L. Poverkhnostnaya uprochnyayushchaya obrabotka s primeneniem kontsentrirovannykh potokov energii [Surface hardening treatment with the use of concentrated energy flows]. Minsk, Nauka i tekhnika Publ., 1990. 78 p. (in Russ.).
  10. Ivantsievskiy V.V. Upravlenie strukturnym i napryazhennym sostoyaniem poverkhnostnykh sloev detaley mashin pri ikh uprochnenii s ispolzovaniem kontsentrirovannykh istochnikov nagreva i finishnogo shlifovaniya. Diss. dokt. tekhn. nauk [Control of the structural and stress state of the surface layers of machine parts during their hardening using concentrated sources of heating and finishing grinding. D. Sc. Thesis]. Novosibirsk, 2012. 425 p. (in Russ.).
  11. Sharapova D.M. Evolyutsiya struktury i svoystv konstruktsionnykh nizkolegirovannykh staley pri kratkovremennykh lokalnykh termicheskikh vozdeystviyakh kontsentrirovannymi istochnikami tepla. Diss. kand. tekhn. nauk [Evolution of structure and properties of structural low-alloy steels under shortterm local thermal effects by concentrated heat sources. Ph. D. Thesis]. Saint Petersburg, 2018. 140 p. (in Russ.).
  12. Gulakov S.V., Shcherbakov S.V., Zavarika N.G. Kompyuternoe modelirovanie napryazhenno-deformirovannogo sostoyaniya elementov sostavnykh konstruktsiy pri vozdeystvii lokalnogo istochnika nagreva [Computer simulation of the stress-strain state of elements of composite structures under the influence of a local heating source]. Reporter of the Priazovskyi State Technical University, 2004, iss. 14, pp. 223–226 (in Russ.).
  13. Grigoriev S.N., Ivannikov A.Yu., Prozhega M.V., Zakharov I.N., Kuznetsova O.G., Levin A.M. The influence of the highly concentrated energy treatments on the structure and properties of medium carbon steel. Metals, 2020, vol. 10, iss. 12. DOI: https://doi.org/10.3390/met10121669.
  14. Gulyaev A.P. Metallovedenie [Metallurgical science]. Moscow, Kniga po trebovaniyu Publ., 2020. 542 p. (in Russ.).
  15. Dinesh Babu P., Balasubramanian K.R., Buvanashekaran G. Laser surface hardening: a review. International journal of surface science and engineering, 2011, vol. 5, nos. 2–3, pp. 131–151.