Bibliography |
- Middelmann V., Wagner U. The torque converter as a system. Available at: https://www.schaeffler.com/remotemedien/media/_ shared_media/08_media_library/01_publications/schaeffler_2/ symposia_1/downloads_11/6_Torque_Converter.pdf (accessed 20 August 2022).
- Automatic transmissions — a brief history. Available at: https://www.autorepairsanantonio.com/40-automatic-transmission-history (accessed 20 August 2022).
- Samie F., Lee C.J., Otanez P.G. Effective driveline vibration detection algorithm in transmission ТСС slip control. Patent US, no. 8,010,265 B2, 2011.
- Otanez P.G., Lee C.J., Samie F. Desired torque converter clutch slip feedback recovery algorithm for tip-in maneuvers. Patent US, no. 2011/0060509 A1, 2011.
- Antipenko G.L. Defekty i metody diagnostirovaniya mekhanicheskikh i gidromekhanicheskikh transmissiy [Defects and diagnostic methods of mechanical and hydromechanical transmissions]. Mogilev, Belorussko-Rossiyskiy universitet Publ., 2020. 243 p. (in Russ.).
- Gorbatenko N.N., et al. Diagnostirovanie gidromekhanicheskikh peredach mobilnykh mashin [Diagnostics of hydromechanical transmissions of mobile machines]. Mogilev, Belorussko-Rossiyskiy universitet Publ., 2010. 511 p. (in Russ.).
- Reginya V.V. Kompleksnaya sistema diagnostirovaniya tekhnicheskogo sostoyaniya gidromekhanicheskoy peredachi s mekhatronnoy sistemoy upravleniya karernykh samosvalov BelAZ. Avtoref. diss. kand. tekhn. nauk [Comprehensive system for diagnosing the technical condition of a hydromechanical transmission with a mechatronic control system for BelAZ dump trucks. Extended Abstract of Ph. D. Thesis]. Minsk. 2018. 24 p. (in Russ.).
- Antonyuk V.E. Osobennosti konstruktsii i ekspluatatsii friktsionnykh diskov [Design and operation features of friction discs]. Mechanics of machines, mechanisms and materials, 2022, no. 2(59), pp. 39–46 (in Russ.).
- Derzhanskiy V.B., Taratorkin I.A. Prognozirovanie dinamicheskoy nagruzhennosti gidromekhanicheskikh transmissiy transportnykh mashin [Prediction of dynamic loading of hydromechanical transmissions of transport vehicles]. Yekaterinburg, Uralskoe otdelenie Rossiyskoy akademii nauk Publ., 2010. 176 p. (in Russ.).
- Taratorkin I.A. Razrabotka raschetnykh i eksperimentalnykh metodov snizheniya dinamicheskoy nagruzhennosti i povysheniya dolgovechnosti gidromekhanicheskikh transmissiy transportnykh mashin. Diss. dokt. tekhn. nauk [Development of computational and experimental methods for reducing dynamic loading and increasing the durability of hydromechanical transmissions of transport vehicles. D. Sc. Thesis]. Kurgan, 2009. 302 p. (in Russ.).
- Derzhanskiy V.B., Taratorkin I.A., Burakov E.A. Mekhanika i prognozirovanie rezonansnykh rezhimov metallokeramicheskikh diskov perspektivnykh gidromekhanicheskikh transmissiy transportnykh mashin [Mechanics and prediction of resonant modes of metal-ceramic discs of promising hydromechanical transmissions of transport vehicles]. BMSTU Journal of Mechanical Engineering, 2007, no. 11, pp. 15–23 (in Russ.).
- Taratorkin A.I. Snizhenie dinamicheskoy nagruzhennosti friktsionnykh elementov upravleniya transmissiey transportnykh mashin metodom isklyucheniya parametricheskikh kolebaniy. Diss. kand. tekhn. nauk [Reduction of the dynamic loading of the friction control elements of the transmission of transport vehicles by eliminating parametric oscillations. Ph. D. Thesis]. Moscow, 2015. 16 p. (in Russ.).
- Taratorkin A.I. Prognozirovanie i snizhenie dinamicheskoy i vibroakusticheskoy nagruzhennosti energosilovykh blokov kolesnykh i gusenichnykh mashin na osnove sovershenstvovaniya modalnykh svoystv [Prediction and reduction of dynamic and vibroacoustic loading of power units of wheeled and tracked vehicles based on the improvement of modal properties]. Kurgan, Kurganskiy gosudarstvennyy universitet Publ., 2021. 200 p. (in Russ.).
- Taratorkin A.I., Belevich A.V., Taratorkin I.A., Trusevich I.A. Strategy for optimizing the NVH parameters of the transport vehicle powertrain during its design. IOP Conference series: Materials science and engineering, 2020, vol. 971. DOI: https://doi.org/10.1088/1757-899X/971/5/052085.
- Walber C., Blough J., Anderson C., Johnson M., Schweitzer J. Predicting cavitation desinence in automotive torque converters. Proceedings of ISMA2014 including USD2014, pp. 4079–4094.
- Prokofev V.N. Gidravlicheskie peredachi kolesnykh i gusenichnykh mashin [Hydraulic transmission of wheeled and tracked vehicles]. Moscow, Voennoe izdatelstvo Ministerstva oborony SSSR Publ., 1960. 300 p. (in Russ.).
- Kochkarev A.Ya. Gidrodinamicheskie peredachi [Hydrodynamic transmissions]. Leningrad, Mashinostroenie Publ., 1971. 336 p. (in Russ.).
- Robinette D., Anderson C., Blough J. Development of a dimensionless model for predicting the onset of cavitation in torque converters. New advances in vehicular and automotive engineering, 2012. DOI: https://doi.org/10.5772/45793.
- Robinette D.L. Detecting and predicting the onset of cavitation in automotive torque converters. Ph.D. Thesis. Michigan, 2007. 24 p.
- Liu C., Xiang C., Yan Q., Wei W., Watson C., Wood H.G. Development and validation of a CFD based optimization procedure for the design of torque converter cascade. Engineering applications of computational fluid mechanics, 2019, vol. 13, iss. 1, pp. 128–141. DOI: https://doi.org/10.1080/19942060.2018.1562383.
- Dong Y., Korivi V., Attibele P., Yuan Y. Torque converter CFD engineering part II: performance improvement through core leakage flow and cavitation control. SAE 2002 world congress & exhibition. Detroit, 2002.
- Mekkes J., Anderson C., Narain A. Static pressure measurements and cavitation signatures on the nose of a torque converter’s stator blades. 10th international symposium on transport phenomena and dynamics of rotating machinery (ISROMAC). Honolulu, 2004. Available at: https://pages.mtu.edu/~narain/IJRM2.pdf (accessed 20 August 2022).
- Srinivasan C., Joshi D., Dhar S., Wang D. Dynamic three-dimensional CFD simulation of closed circuit torque converter systems. SAE international journal of passenger cars: mechanical systems, 2016, vol. 9, iss. 1, pp. 289–300. DOI: https://doi.org/10.4271/2016-01-1345.
- Liu C., Guo M., Yan Q., Wei W. Influence of charging oil condition on torque converter cavitation characteristics. Chinese journal of mechanical engineering, 2022, no. 35. DOI: https://doi.org/10.1186/s10033-022-00727-y.
- Anderson C.L., Zeng L., Sweger P.O., Narain A., Blough J.R. Experimental investigation of cavitation signatures in an automotive torque converter using a microwave telemetry technique. International journal of rotating machinery, 2003, vol. 9. DOI: https://doi.org/10.1155/S1023621X03000381.
- Rivera E. De J. Pressure measurements inside multiple cavities of a torque converter and CFD correlation. Ph. D. Thesis. Houghton, 2018. Available at: https://digitalcommons.mtu.edu/etdr/719 (accessed 20 August 2022).
- Guo M., Liu C., Yan Q., Wei W., Khoo B.C. The effect of rotating speeds on the cavitation characteristics in hydraulic torque converter. Machines, 2022, vol. 10, iss. 2. DOI: https://doi.org/10.3390/machines10020080.
- Pan X., Xinyuan C., Jianghong D., Liangcai Z., Feng Z. Application of slotted blade in the improvement of turbomachinery performance. AIP advances, 2021, vol. 11, iss. 4. DOI: https://doi.org/10.1063/5.0041144.
- Ran Z., Ma W., Liu C. 3D cavitation shedding dynamics: cavitation flow-fluid vortex formation interaction in a hydrodynamic torque converter. Applied sciences, 2021, vol. 11, iss. 6. DOI: https://doi.org/10.3390/app11062798.
- Liu C., Wei W., Yan Q., Weaver B.K. Torque converter capacity improvement through cavitation control by design. Journal of fluids engineering, 2016, vol. 139, iss. 4. DOI: https://doi.org/10.1115/1.4035299.
|