Title of the article THERMODYNAMIC ANALYSIS OF THE FORMATION OF A NANOSTRUCTURAL POLYCRYSTALLINE MATERIAL BASED ON NANODIAMONDS MODIFIED WITH NON-DIAMOND CARBON (PART 1)
Authors

SENYUT Vladimir T., Ph. D. in Eng., Assoc. Prof., Leading Researcher of the Laboratory of Nanostructured and Superhard Materials, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

VITYAZ Petr A., Academician of the NAS of Belarus, D. Sc. in Eng., Prof., Chief Researcher of the Department of Technologies of Mechanical Engineering and Metallurgy, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

PARNITSKY Alexander M., Ph. D. in Eng., Senior Researcher of the Laboratory of Nanostructured and Superhard Materials, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section MATERIALS SCIENCE IN MECHANICAL ENGINEERING
Year 2023
Issue 3(64)
Pages 60–65
Type of article RAR
Index UDK 621.762:621.921.34
DOI https://doi.org/10.46864/1995-0470-2023-3-64-60-65
Abstract The influence of the size of carbon particles on the parameters of the graphite–diamond phase transformation is considered. It is shown that the surface energy of carbon nanoparticles of various shapes (spherical, columnar) makes a significant contribution to their total thermodynamic potential, which leads to a shift in the diamond–graphite equilibrium curve to the low pressure region and an expansion of the diamond phase stability region. At the same time, the change in the chemical potential (Gibbs free energy) during the direct (not catalytic) transition of thin-film graphite-like nanostructures into diamond will be higher than for “massive” graphite, which leads to an increase in the pressure of phase transformation into diamond. To reduce the parameters of diamond formation and obtain nanostructured diamond polycrystals, it is proposed to use nanodiamond particles with a nanometer surface layer of non-diamond (graphitelike) carbon as the starting material. In this case, the nanodiamond surface will influence the transition of a nanometer layer of graphite (graphite-like carbon) into diamond under more favorable thermodynamic parameters.
Keywords nanodiamond, non-diamond forms of carbon, state diagram, phase transformations, chemical potential, Gibbs energy
  You can access full text version of the article.
Bibliography
  1. Vityaz P.A., Senyut V.T., Kheifetz M.L., Kolmakov A.G. Obtaining nanocrystalline superhard materials from surface-modified nanodiamond powder. Journal of advanced materials and technologies, 2022, vol. 7, no. 4, pp. 256–269. http://doi.org/10.17277/jamt.2022.04.pp.256-269.
  2. Vityaz P.A., Ilyushchenko A.F., Zhornik V.I. Nanoalmazy detonatsionnogo sinteza: poluchenie i primenenie [Detonation synthesis nanodiamonds: preparation and application]. Minsk, Belorusskaya nauka Publ., 2013. 381 p. (in Russ.).
  3. Isobe F., Ohfuji H., Sumiya H., Irifune T. Nanolayered diamond sintered compact obtained by direct conversion from highly oriented graphite under high pressure and high temperature. Journal of nanomaterials, 2013, 6 p. DOI: https://doi.org/10.1155/2013/380165.
  4. Sumiya H., Irifune T., Kurio A., Sakamoto S., Inoue T. Microstructure features of polycrystalline diamond synthesized directly from graphite under static high pressure. Journal of materials science, 2004, vol. 39, iss. 2, pp. 445–450. DOI: https://doi.org/10.1023/B:JMSC.0000011496.15996.44.
  5. Bezhenar N.P., et al. Sintez i spekanie sverkhtverdykh materialov dlya proizvodstva instrumenta [Synthesis and sintering of superhard materials for tool production]. Minsk, Belorusskaya nauka Publ., 2021. 337 p. (in Russ.).
  6. Vitiaz P.A., Senyut V.T., Kheifetz M.L., Kolmakov A.G., Klimenko S.A. Sintez almaznykh nanostrukturnykh materialov na osnove nanoalmazov [Synthesis of diamond nanostructured materials on the basis of nanodiamonds]. Doklady of the National Academy of Sciences of Belarus, 2012, vol. 56, no. 6, pp. 87–91 (in Russ.).
  7. Gerasimenko V.K., Bespalko O.P., Bondarenko V.P., Bezhenar N.P. Novyy polikristallicheskiy sverkhtverdyy material karbonit [New polycrystalline superhard material carbonite]. Sverkhtverdye materialy, 1981, no. 6, pp. 11–12 (in Russ.).
  8. Sverkhtverdye materialy: poluchenie i primenenie. Tom 1. Sintez almazov i podobnykh materialov [Superhard materials: production and application. Volume 1. Synthesis of diamonds and similar materials]. Kiev, ALKON Publ., 2003. 320 p. (in Russ.).
  9. Kurdyumov A.V. Fazovye prevrashcheniya v uglerode i nitride bora [Phase transformations in carbon and boron nitride]. Kiev, Nauchnaya mysl Publ., 1979. 188 p. (in Russ.).
  10. Gusev A.I. Nanomaterialy, nanostruktury, nanotekhnologii [Nanomaterials, nanostructures, nanotechnology]. Moscow, Fizmatlit Publ., 2005. 416 p. (in Russ.).
  11. Chaykovskiy E.F., Rozenberg G.Kh. Fazovaya diagramma ugleroda i vozmozhnost polucheniya almaza pri nizkikh davleniyakh [Carbon phase diagram and the possibility of obtaining diamond at low pressures]. Doklady Akademii nauk, 1984, vol. 279, no. 6, pp. 1372–1375 (in Russ.).
  12. Dolmatov V.Yu. Detonatsionnye nanoalmazy. Poluchenie, svoystva, primenenie [Detonation nanodiamonds. Getting, properties, application]. Saint Petersburg, Professional Publ., 2011. 536 p. (in Russ.)
  13. Fedoseev D.V., Deryagin B.V., Varshavskaya I.G., Semenova-Tyan-Shanskaya A.S. Nukleatsiya almaza pri vysokikh davleniyakh [Diamond nucleation at high pressures]. Kristallizatsiya almaza, 1984, p. 27 (in Russ.).
  14. Fedoseev D.V., Deryagin B.V., Varshavskaya I.G., Semenova-Tyan-Shanskaya A.S. Kristallizatsiya almaza [Diamond crystallization]. Moscow, Nauka Publ., 1984. 136 p. (in Russ.).
  15. Nozhkina A.V., Kostikov V.I. Poverkhnostnaya energiya almaza i grafita [Surface energy of diamond and graphite]. Porodorazrushayushchiy i metalloobrabatyvayushchiy instrument – tekhnika, tekhnologiya ego izgotovleniya i primeneniya, 2017, iss. 20, pp. 161–167 (in Russ.).