Title of the article THERMODYNAMIC ANALYSIS OF THE FORMATION OF A NANOSTRUCTURAL POLYCRYSTALLINE MATERIAL BASED ON NANODIAMONDS MODIFIED WITH NON-DIAMOND CARBON (PART 2)
Authors

SENYUT Vladimir T., Ph. D. in Eng., Assoc. Prof., Leading Researcher of the Laboratory of Nanostructured and Superhard Materials of the R&D Center “Mechanical Engineering Technologies and Processing Equipment”, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

VITYAZ Petr A., Academician of the NAS of Belarus, D. Sc. in Eng., Prof., Chief Researcher of the Department of Technologies of Mechanical Engineering and Metallurgy of the R&D Center “Mechanical Engineering Technologies and Processing Equipment”, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

PARNITSKY Alexander M., Ph. D. in Eng., Senior Researcher of the Laboratory of Nanostructured and Superhard Materials of the R&D Center “Mechanical Engineering Technologies and Processing Equipment”, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section MATERIALS SCIENCE IN MECHANICAL ENGINEERING
Year 2023
Issue 4(65)
Pages 76–84
Type of article RAR
Index UDK 621.762:621.921.34
DOI https://doi.org/10.46864/1995-0470-2023-4-65-76-84
Abstract The paper presents the results of thermodynamic analysis showing that the use of nanodiamonds with a thin graphite-like coating formed by surface graphitization of nanodiamonds makes it possible to increase the thermodynamic stimulus for the formation of a diamond structure under conditions of high pressures and temperatures. For a thin carbon film with a disordered structure (amorphous carbon, soot), the pressure of transition into diamond will exceed the equilibrium pressure due to the lower surface energy of amorphous carbon compared to the surface energy of graphite. In this case, a decrease in the thickness of the non-diamond carbon film on the surface of a diamond particle leads to an increase in the pressure of the graphite–diamond phase transition. The proposed approach provides the possibility of reducing the synthesis parameters of nanostructured polycrystalline diamond materials without additional use of phase transformation catalysts.
Keywords nanodiamond, non-diamond forms of carbon, state diagram, phase transformations, chemical potential, Gibbs energy
  You can access full text version of the article.
Bibliography
  1. Bezhenar N.P., et al. Sintez i spekanie sverkhtverdykh materialov dlya proizvodstva instrumenta [Synthesis and sintering of superhard materials for tool production]. Minsk, Belorusskaya nauka Publ., 2021. 337 p. (in Russ.).
  2. Vityaz P.A., Senyut V.T., Kheifetz M.L., Kolmakov A.G. Obtaining nanocrystalline superhard materials from surface-modified nanodiamond powder. Journal of advanced materials and technologies, 2022, vol. 7, no. 4, pp. 256–269. DOI: http://doi.org/10.17277/jamt.2022.04.pp.256-269.
  3. Vityaz P.A., et al. Nanoalmazy detonatsionnogo sinteza: poluchenie i primenenie [Detonation synthesis nanodiamonds: preparation and application]. Minsk, Belorusskaya nauka Publ., 2013. 381 p. (in Russ.).
  4. Vitiaz P.A., Senyut V.T., Kheifetz M.L., Kolmakov A.G., Klimenko S.A. Sintez almaznykh nanostrukturnykh materialov na osnove nanoalmazov [Synthesis of diamond nanostructured materials on the basis of nanodiamonds]. Doklady of the National Academy of Sciences of Belarus, 2012, vol. 56, no. 6, pp. 87–91 (in Russ.).
  5. Vityaz P.A., Senyut V.T., Kheifets M.L., Kolmakov A.G., Klimenko S.A. Synthesis of superhard materials based on sphalerite boron nitride using carbon nanoparticles as a phase conversion catalyst. Journal of advanced materials and technologies, 2020, no. 3(19), pp. 8–17.
  6. Kheyfets M.L., Kolmakov A.G., Vityaz P.A., Senyut V.T., Klimenko S.A. Improvement of manufacture technology of nanostructured diamond materials with the use of physicochemical nonequilibrium analysis. Inorganic materials: Applied research, 2016, vol. 7, no. 1, pр. 137–142. DOI: https://doi.org/10.1134/S2075113316010081.
  7. Ōsawa E. Recent progress and perspectives in single-digit nanodiamond. Diamond and related materials, 2007, vol. 16, iss. 12, pp. 2018–2022. DOI: https://doi.org/10.1016/j.diamond.2007.08.008.
  8. Barnard A.S., Sternberg M. Crystallinity and surface electrostatics of diamond nanocrystals. Journal of materials chemistry, 2007, vol. 17, iss. 45, pp. 4811–4819. DOI: https://doi.org/10.1039/B710189A.
  9. Barnard A.S. Self-assembly in nanodiamond agglutinates. Journal of materials chemistry, 2008, vol. 18, iss. 34, pp. 4038–4041. DOI: https://doi.org/10.1039/B809188A.
  10. Fizicheskie svoystva almaza [Physical properties of diamond]. Kiev, Nauchnaya mysl Publ., 1987. 188 p. (in Russ.).
  11. Nozhkina A.V., Kostikov V.I., Dudakov V.B. Fiziko-khimicheskie protsessy na mezhfaznoy poverkhnosti almaza s obrabatyvaemym materialom [Physico-chemical processes on the interfacial surface of the diamond with the processed material]. Porodorazrushayushchiy i metalloobrabatyvayushchiy instrument — tekhnika, tekhnologiya ego izgotovleniya i primeneniya, 2012, iss. 15, pp. 351–358 (in Russ.).
  12. Romanenko A.I., et al. Influence of gamma irradiation on electrophysical properties of onion-like carbon. Journal of optoelectronics and advanced materials, 2008, vol. 10, no. 7, pp. 1749–1753.
  13. Shenderova O., et al. Detonation nanodiamond and onion-like carbon: applications in composites. Physica status solidi, 2008, vol. 205, iss. 9, pp. 2245–2251. DOI: https://doi.org/10.1002/pssa.200879706.
  14. Senyut V.T., Vityaz P.A., Parnitsky A.M. Termodinamicheskiy analiz protsessa formirovaniya nanostrukturnogo polikristallicheskogo materiala na osnove nanoalmazov, modifitsirovannykh nealmaznym uglerodom (chast 1) [Thermodynamic analysis of the formation of a nanostructural polycrystalline material based on nanodiamonds modified with non-diamond carbon (part 1)]. Mechanics of machines, mechanisms and materials, 2023, no. 3(64), pp. 60–65. DOI: https://doi.org/10.46864/1995-0470-2023-3-64-60-65 (in Russ.).
  15. Dolmatov V.Yu. Detonatsionnye nanoalmazy. Poluchenie, svoystva, primenenie [Detonation nanodiamonds. Preparation, properties, application]. Saint Petersburg, NPO “Professional” Publ., 2011. 536 p. (in Russ.)
  16. Kurdyumov A.V. Fazovye prevrashcheniya v uglerode i nitride bora [Phase transformations in carbon and boron nitride]. Kiev, Nauchnaya mysl Publ., 1979. 188 p. (in Russ.).
  17. Nozhkina A.V., Kostikov V.I. Poverkhnostnaya energiya almaza i grafita [Surface energy of diamond and graphite]. Porodorazrushayushchiy i metalloobrabatyvayushchiy instrument – tekhnika, tekhnologiya ego izgotovleniya i primeneniya, 2017, iss. 20, pp. 161–167 (in Russ.).
  18. Turchaninov M.A. Mekhanizmy kristallizatsii zhidkogo ugleroda, poluchennogo pri plavlenii grafita impulsom lazera v gazovykh sredakh s davleniem ~10 MPa. Avtoref. diss. kand. fiz.-mat. nauk [Mechanisms of crystallization of liquid carbon obtained by melting graphite with a laser pulse in gaseous media with a pressure of ~10 MPa. Extended Abstract of Ph. D. Thesis]. Moscow, 2010. 25 p. (in Russ.).
  19. Jiang Q., Chen Z.P. Thermodynamic phase stabilities of nanocarbon. Carbon, 2006, vol. 44, iss. 1, p. 79–83. DOI: https://doi.org/10.1016/j.carbon.2005.07.014.
  20. Isobe F., Ohfuji H., Sumiya H., Irifune T. Nanolayered diamond sintered compact obtained by direct conversion from highly oriented graphite under high pressure and high temperature. Journal of nanomaterials, 2013, vol. 2013, 6 p. DOI: https://doi.org/10.1155/2013/380165.
  21. Sumiya H., Irifune T., Kurio A., Sakamoto S., Inoue T. Microstructure features of polycrystalline diamond synthesized directly from graphite under static high pressure. Journal of materials science, 2004, vol. 39, iss. 2, pp. 445–450. DOI: https://doi.org/10.1023/B:JMSC.0000011496.15996.44.
  22. Lu S., et al. High pressure transformation of graphene nanoplates: A Raman study. Chemical physics letters, 2013, vol. 585, pp. 101–106. DOI: https://doi.org/10.1016/j.cplett.2013.08.085.