Title of the article ON THE USE OF THE METHOD OF MULTISTAGE LOADING FOR COMPUTATIONAL AND EXPERIMENTAL EVALUATION OF THE CONTACT ENDURANCE LIMIT
Authors

BOGDANOVICH Alexander V., D. Sc. in Eng., Prof., Professor of the Department of Theoretical and Applied Mechanics, Belarusian State University, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

BASINIUK Vladimir L., D. Sc. in Eng., Prof., Chief of the R&D Center “Mechanical Engineering Technologies and Processing Equipment” – Head of the Laboratory of Gearing Systems and Processing Equipment, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

GLAZUNOVA Anna A., Researcher of the Laboratory of Gearing Systems and Processing Equipment of the R&D Center “Mechanical Engineering Technologies and Processing Equipment”, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section DYNAMICS, DURABILITY OF VEHICLES AND STRUCTURES
Year 2024
Issue 1(66)
Pages 29–36
Type of article RAR
Index UDK 539.4; 620.169.2
DOI https://doi.org/10.46864/1995-0470-2024-1-66-29-36
Abstract The possibility of applying the method of multistage loading (Lokati) is considered for the calculation and experimental evaluation of the contact endurance limit. The results of applying the Lokati method to determine the median contact endurance limit of specimens made of aluminum alloy Д16 (D16) and 0.45% carbon steel are analyzed. The tests were carried out according to the scheme “shaft — roller” in rolling conditions without slipping. The criteria for reaching the limit state, the parameters of the multistage loading mode were varied. It is shown that the Lokati method and its basis, the hypothesis of linear accumulation of fatigue damage, make it possible to satisfactorily assess the value of the contact endurance limit of the studied materials.
Keywords rolling-contact fatigue, durability, tests, endurance limit, multistage loading method
  You can access full text version of the article.
Bibliography
  1. Oleynik N.V., Sklyar S.P. Uskorennye ispytaniya na ustalost [Accelerated fatigue tests]. Kiev, Nauchnaya mysl Publ., 1985. 304 p. (in Russ.).
  2. Begagoen I.A., Rudenko G.A., Antonyuk O.I. Issledovanie i metodika uskorennykh ispytaniy na vynoslivost stupenchato-uvelichivayushcheysya nagruzkoy [Research and methodology of accelerated endurance tests with a stepwise increasing load]. BMSTU journal of mechanical engineering, 1970, no. 2, pp. 19–24 (in Russ.).
  3. Blagodarnyy V.M. Uskorennye resursnye ispytaniya pribornykh zubchatykh privodov [Accelerated service life tests of instrument gear drives]. Moscow, Mashinostroenie Publ., 1980. 113 p. (in Russ.).
  4. Dmitrichenko S.S. Sovremennye metody uskorennykh ispytaniy mashin na soprotivlenie ustalosti [Modern methods of accelerated testing of machines for fatigue resistance]. Vestnik mashinostroeniya, 1967, no. 2, pp. 7–12 (in Russ.).
  5. Pochtennyy E.K. Kineticheskaya teoriya mekhanicheskoy ustalosti i ee prilozheniya [Kinetic theory of mechanical fatigue and its applications]. Minsk, Nauka i tekhnika Publ., 1973. 214 p. (in Russ.).
  6. Troshchenko V.T., Sosnovskiy L.A. Soprotivlenie ustalosti metallov i splavov. Tom 1 [Fatigue resistance of metals and alloys. Volume 1]. Kiev, Nauchnaya mysl Publ., 1987. 510 p. (in Russ.).
  7. Troshchenko V.T. Deformirovanie i razrushenie metallov pri mnogotsiklovom nagruzhenii [Deformation and destruction of metals under multicycle loading]. Kiev, Nauchnaya mysl Publ., 1981. 343 p. (in Russ.).
  8. Locati L. Le prove di cafica come ausilio alla prodetta sone ed elle predusioni. La metallurgia italiana, 1955, no. 9, pp. 78–83.
  9. Methodological guidelines RD 50-686-89. Nadezhnost v tekhnike. Metody uskorennykh ispytaniy na ustalost dlya otsenki predelov vynoslivosti materialov, elementov mashin i konstruktsiy [Reliability in machinery. Accelerated fatigue testing methods for assessing the endurance limits of materials, machine elements and structures]. Moscow, Gosudarstvennyy komitet SSSR po standartam Publ., 1990. 27 p. (in Russ.).
  10. Palmgren A. Die Lebensdauer von Kugellagern. Zeitschrift des Vereines Deutscher Ingenieure, 1924, vol. 2, no. 14, pp. 339–341.
  11. Miner M.A. Cumulative damage in fatigue. Journal of applied mechanics, 1945, vol. 12, iss. 3, pp. 159–164. DOI: https://doi.org/10.1115/1.4009458.
  12. Sosnovskiy L.A. Osnovy tribofatiki [Fundamentals of tribo-fatigue]. Gomel, Belorusskiy gosudarstvennyy universitet transporta Publ., 2003. Vol. 1, 246 p. Vol. 2, 235 p. (in Russ.).
  13. Sosnovskiy L.A. Mekhanika iznosoustalostnogo povrezhdeniya [Mechanics of wear-resistant damage]. Gomel, Belorusskiy gosudarstvennyy universitet transporta Publ., 2007. 434 p. (in Russ.).
  14. Londhe N.D., Arakere N.K., Haftka R.T. Reevaluation of rolling element bearing load-life equation based on fatigue endurance data. Tribology transactions, 2015, vol. 58, iss. 5, pp. 815–828. DOI: https://doi.org/10.1080/10402004.2015.1021943.
  15. Romanowicz P.J., Szybiński B. Fatigue life assessment of rolling bearings made from AISI 52100 bearing steel. Materials, 2019, vol. 12, iss. 3. DOI: https://doi.org/10.3390/ma12030371.
  16. Hwang J.-I., Poll G. A new approach for the prediction of fatigue life in rolling bearings based on damage accumulation theory considering residual stresses. Frontiers in manufacturing technology, 2022, vol. 2. DOI: https://doi.org/10.3389/fmtec.2022.1010759.
  17. Bogdanovich A.V., Tyurin S.A., Senkova E.L. Zakonomernosti nakopleniya povrezhdeniy stali 45 pri kontaktno-mekhanicheskoy ustalosti [Patterns of accumulation of damage to 0.45% carbon steel during mechano-rolling fatigue]. Industrial laboratory. Diagnostics of materials, 1996, vol. 62, no. 2, pp. 42–45 (in Russ.).
  18. R 50-54-30-87. Raschety i ispytaniya na prochnost. Metody ispytaniy na kontaktnuyu ustalost [Calculations and strength tests. Methods of testing for mechano-rolling fatigue]. Moscow, Gosudarstvennyy komitet SSSR po standartam Publ., VNIINMASH Publ., 1988. 64 p. (in Russ.).
  19. Sosnovskiy L.A., Bogdanovich A.V., Tyurin S.A. Eksperimentalnoe issledovanie kontaktno-mekhanicheskoy ustalosti stali 45 metodom mnogostupenchatogo nagruzheniya [Experimental investigation of the 0.45% carbon steel during mechano-rolling fatigue by the method of multistage loading]. Industrial laboratory. Diagnostics of materials, 1996, vol. 62, no. 3, pp. 30–34 (in Russ.).
  20. Standard of Belarus STB 1233–2000. Tribofatika. Metody iznosoustalostnykh ispytaniy. Uskorennye ispytaniya na kontaktno-mekhanicheskuyu ustalost [Tribo-fatigue. Methods of wear-fatigue testing. Accelerated tests for mechano-rolling fatigue]. Minsk, Mezhgosudarstvennyy sovet po standartizatsii, metrologii i sertifikatsii Publ., Belorusskiy gosudarstvennyy institut standartizatsii i sertifikatsii Publ., 2007. 8 p. (in Russ.).
  21. State Standard 30754-2001. Tribofatika. Metody iznosoustalostnykh ispytaniy. Ispytaniya na kontaktno-mekhanicheskuyu ustalost [Tribo-fatigue. Wear-fatigue test methods. Mechanorolling fatigue tests]. Minsk, Mezhgosudarstvennyy sovet po standartizatsii, metrologii i sertifikatsii Publ., Belorusskiy gosudarstvennyy institut standartizatsii i sertifikatsii Publ., 2002. 32 p. (in Russ.).
  22. State Standard 30755-2001. Tribofatika. Mashiny dlya iznosoustalostnykh ispytaniy. Obshchie tekhnicheskie trebovaniya [Tribo-fatigue. Machines for wear-fatigue testing. General technical requirements]. Minsk, Mezhgosudarstvennyy sovet po standartizatsii, metrologii i sertifikatsii Publ., Belorusskiy gosudarstvennyy institut standartizatsii i sertifikatsii Publ., 2002. 8 p. (in Russ.).
  23. Orlov M.R., Morozova L.V., Terekhin A.M., Naprienko S.A., Avtaev V.V. Issledovanie vliyaniya khimiko-termicheskoy obrabotki na soprotivlenie mnogotsiklovoy ustalosti stali 20Kh3MVF v usloviyakh asimmetrichnogo tsikla nagruzheniya [Influence study of thermochemical treatment on high-cycle fatigue strength of 20Kh3MVF steel under non-symmetric fatigue cycle conditions]. Deformation and fracture of materials, 2015, no. 12, pp. 18–24 (in Russ.).
  24. Belyaev M.S., Orlov M.R. Mnogotsiklovaya ustalost monokristallicheskogo zharoprochnogo nikelevogo splava [High cycle fatigue of single crystal nickel superalloy]. Metallurg, 2018, no. 1, pp. 74–81 (in Russ.).
  25. Yelovoy O.M., Lobkova M.P., Hlazunova H.A. Kompleksnaya otsenka sluzhebnykh svoystv kompozitsionnykh materialov [Comprehensive assessment of the service properties of composite materials]. Aktualnye voprosy mashinovedeniya, 2022, iss. 11, pp. 99–102 (in Russ.).
  26. Yelovoy O.M., Bogdanovich A.V., Hlazunova H.A. Vliyanie modifitsirovaniya detaley s keramicheskimi MDO-pokrytiyami na svoystva pri kachenii i skolzhenii [Influence of modifications of parts with ceramic microarc oxidation coatings on service properties in rolling and sliding]. Aktualnye voprosy mashinovedeniya, 2022, iss. 11, pp. 317–321 (in Russ.).
  27. Basiniuk V.L., Lobkova M.P., Tychinskaya I.D. Universalnyy robotizirovannyy kompleks dlya mekhanicheskikh i tribotekhnicheskikh ispytaniy [Universal robotic complex for mechanical and tribotechnical tests]. Aktualnye voprosy mashinovedeniya, 2023, iss. 12, pp. 92–94 (in Russ.).
  28. Volkotrub R.E., Glazunova A.A., Lobkova M.P. Ekspress analiz mekhanicheskikh svoystv nanostrukturirovannykh materialov [Express analysis of the mechanical properties of nanostructured materials]. Aktualnye voprosy mashinovedeniya, 2023, iss. 12, pp. 349–351 (in Russ.).