Title of the article JUSTIFICATION OF FORCE PARAMETERS FOR STABILIZATION OF RING BLANKS OF LOW RIGIDITY
Authors

ANTONYUK Vladimir E., D. Sc. in Eng., Prof., Chief Researcher of the Laboratory of Metallurgy in Mechanical Engineering of the R&D Center “Mechanical Engineering Technologies and Processing Equipment”, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section DYNAMICS, DURABILITY OF VEHICLES AND STRUCTURES
Year 2024
Issue 2(67)
Pages 30–35
Type of article RAR
Index UDK 621.7
DOI https://doi.org/10.46864/1995-0470-2024-2-67-30-35
Abstract The necessity of stabilization of ring blanks of low rigidity is substantiated. For stabilization a 6-position loading scheme with uniformly distributed radial forces is proposed, with the possibility to transform into 3- and 2-position loading schemes. The stress state of the ring under loading by uniformly distributed radial forces is analyzed, and calculation dependences for determining the total stress at 6-, 3- and 2-position loading schemes are proposed. Calculation dependences are offered for determination of force parameters of the device with lever-joint mechanism for creation of stresses in the ring at the level of conditional yield strength. According to the proposed method of calculation of force parameters, an example of calculation is given for a ring made of 40ХМФА (40KhMFA) steel with an outside diameter of 392 mm. The developed recommendations can be used at creation of devices for stabilization and removal of residual stresses in ring blanks, which are necessary for manufacture of critical products in such areas as auto- and aircraft construction, precision engineering, military industry.
Keywords ring blank, ring, stress state, stabilization, radial force, lever-joint mechanism
  You can access full text version of the article.
Bibliography
  1. Automotive, transportation, e-mobility. Available at: https://www.galdabini.eu/straightening/automotive- transportation-e-mobility (accessed 14 December 2023).
  2. Ragulskis K.M., Stupilnas B.B., Tolutis K.B. Vibratsionnoe starenie [Vibration ageing]. Leningrad, Mashinostroenie Publ., 1987. 72 p. (in Russ.).
  3. Dawson R., Moffat D.G. Vibratory stress relief: a fundamental study of its effectiveness. Journal of engineering materials and technology, 1980, vol. 102, iss. 2, pp. 169–176. DOI: https://doi.org/10.1115/1.3224793.
  4. Daukshas K.K. Stabilizatsiya formy detaley vibratsionnym nagruzheniem. Diss. kand. tekhn. nauk [Shape stabilization of parts by vibration loading. Ph. D. thesis]. Irkutsk, 1996. 178 p. (in Russ.).
  5. Lashchenko G.I. Vibroobrabotka svarnykh mashinostroitelnykh konstruktsiy [Vibration treatment of welded engineering structures]. Svarochnoe proizvodstvo, 1992, no. 12, pp. 3–4 (in Russ.).
  6. Lashchenko G.I., Nikityuk Yu.A. Osnovy vibratsionnoy obrabotki svarnykh konstruktsiy [Fundamentals of vibration processing of welded structures]. Kiev, OOO “NPF “VISP” Publ., 2013. 38 p. (in Russ.).
  7. Letunovskiy A.P., Antonov A.A., Steklov O.I. Snyatie tekhnologicheskikh ostatochnykh napryazheniy v metallokonstruktsiyakh nizkochastotnoy vibroobrabotkoy [Removal of technological residual stresses in metal structures by low-frequency vibration processing]. Blanking productions in mechanical engineering, 2012, no. 8, pp. 12–16 (in Russ.).
  8. Kreknin L.T. Proizvodstvo avtomaticheskogo oruzhiya. Chast 1 — proizvodstvo stvolov [Manufacture of automatic weapons. Part 1 — production of barrels]. Izhevsk, 1998. 238 p. (in Russ.).
  9. Babenko M.G. Sovershenstvovanie tekhnologii obespecheniya razmernoy tochnosti pretsizionnykh detaley tipa kolets podshipnikov na osnove ultrazvukovoy stabilizatsii vnutrennikh napryazheniy. Diss. kand. tekhn. nauk [Improvement of technology for dimensional accuracy of precision parts of bearing rings type on the basis of ultrasonic stabilization of internal stresses. Ph. D. thesis]. Saratov, 2002. 150 p. (in Russ.).
  10. Slesarev S.V. Sovershenstvovanie tekhnologii stabilizatsii ostatochnykh napryazheniy v pretsizionnykh detalyakh tipa kolets podshipnikov na osnove primeneniya ultrazvukovoy energii. Diss. kand. tekhn. nauk [Perfection of technology of stabilization of residual stresses in precision parts of bearing rings type on the basis of application of ultrasonic energy. Ph. D. thesis]. Saratov, 2006. 180 p. (in Russ.).
  11. Baltaev T.A., Samigullaeva N.T., Korolev A.V., Balaev A.F. O primenimosti energii ultrazvuka v optimizatsii tekhnologicheskikh protsessov relaksatsii ostatochnykh napryazheniy [On applicability of ultrasound energy in optimization of technological processes of residual stress relaxation]. Ғылым және білім = Nauka i obrazovanie, 2015, no. 3(40), pp. 55–59 (in Russ.).
  12. Gorokhov V.A., Belyakov N.V., Skhirtladze A.G. Materialy i ikh tekhnologii. Chast 1 [Materials and their technologies. Part 1]. Moscow, INFRAM Publ., 2014. 589 p. (in Russ.).
  13. Antonyuk V.E. Dinamicheskaya stabilizatsiya v proizvodstve malozhestkikh detaley [Dynamic stabilization in the production of low rigidity parts]. Minsk, Belorusskaya nauka Publ., 2017. 190 p. (in Russ.).
  14. Birger I.A., Shorr B.F., Shneyderovich R.M. Raschet na prochnost detaley mashin [Strength calculation of machine parts]. Moscow, Mashinostroenie Publ., 1993. 640 p. (in Russ.).
  15. Sorokin V.G., et al. Marochnik staley i splavov [Steel and alloy grade guide]. Moscow, Mashinostroenie Publ., 1989. 640 p. (in Russ.).
  16. Tsentralnyy metallicheskiy portal [Central metal portal]. Available at: https://metallicheckiy-portal.ru/ (accessed 14 August 2023) (in Russ).