Title of the article AERODYNAMIC CALCULATION OF THE COMBINE HARVESTER CLEANING SYSTEM IN 2D FORMULATION
Authors

KALINOUSKI Аliaksandr А., M. Sc. in Eng., Leading Design Engineer, Scientific and Technical Centre of Combine Harvesters Manufacturing OJSC “Gomselmash”, Gomel, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section MECHANICAL ENGINEERING COMPONENTS
Year 2024
Issue 2(67)
Pages 53–60
Type of article RAR
Index UDK 631.354.2.076, 532.5
DOI https://doi.org/10.46864/1995-0470-2024-2-67-53-60
Abstract The paper presents the methodology of modelling air flows in the flow area of the air-screen cleaning system of a combine harvester in two-dimensional formulation. Recommendations are given on parameters adjustment of the computational fluid dynamics software package Ansys Fluent. An example is provided on aerodynamic calculation of cleaning system two-dimensional model. According to the estimation of the results of experimental studies and modelling, the error was not more than 10 %. Recommendations are formulated on the cleaning system design to obtain uniform airflow across its width. The application of this methodology makes it possible to carry out the model calculation on a personal computer without using clusters or high-performance servers. The obtained results will be subsequently used in further research of the combine harvester cleaning system.
Keywords cleaning system, flow area, 2D modelling, air flows, harvester
  You can access full text version of the article.
Bibliography
  1. Frolov K.V. Mashinostroenie. Entsiklopediya. T. IV-16. Selskokhozyaystvennye mashiny i oborudovanie [Mechanical engineering. Encyclopedia. Vol. IV-16. Agricultural machinery and equipment]. Moscow, Mashinostroenie Publ., 2002. 720 p. (in Russ.).
  2. Zhang C., Geng D., Xu H., Li X., Li D., Wang Q. Experimental study on the influence of working parameters of centrifugal fan on airflow field in cleaning room. Agriculture, 2023, vol. 13, iss. 7. DOI: https://doi.org/10.3390/agriculture13071368.
  3. Badretdinov I., Mudarisov S., Khasanov E., Nasurov R., Tuktarov M. Operation technological process research in the cleaning system of the grain combine. Journal of agricultural engineering, 2021, vol. 52, no. 2. DOI: https://doi.org/10.4081/jae.2021.1129.
  4. Badretdinov I.D., Mudarisov S.G. Nauchnoe obosnovanie i sovershenstvovanie pnevmaticheskikh sistem selskokhozyaystvennykh mashin na osnove modelirovaniya tekhnologicheskogo protsessa [Scientific justification and improvement of pneumatic systems for agricultural machines based on the simulation of technological process]. Vestnik NGIEI, 2019, no. 9(100), pp. 5–16 (in Russ.).
  5. Kovalev N.G., Khaylis G.A., Kovalev M.M. Selskokhozyaystvennye materialy (vidy, sostav, svoystva) [Agricultural materials (types, composition, properties)]. Moscow, IK “Rodnik” Publ., zhurnal “Agrarnaya nauka” Publ., 1998. 208 p. (in Russ.).
  6. Fedorova N.N., Valger S.A., Danilov M.N., Zakharova Yu.V. Osnovy raboty v Ansys 17 [Basics of working in Ansys 17]. Moscow, DMK Press Publ., 2017. 210 p. (in Russ.).
  7. Bruyaka V.A., et al. Inzhenernyy analiz v ANSYS Workbench [Engineering analysis in ANSYS Workbench]. Samara, Samarskiy gosudarstvennyy tekhnicheskiy universitet Publ., 2010. 271 p. (in Russ.).
  8. Argyropoulos C.D., Markatos N.C. Recent advances on the numerical modelling of turbulent flows. Applied mathematical modelling, 2015, vol. 39, iss. 2, pp. 693–732. DOI: https://doi.org/10.1016/j.apm.2014.07.001.
  9. Deryagin V.F. Osnovy aerogidrogazodinamiki [Fundamentals of aerohydrogasodynamics]. Kirovograd, GLAU Publ., 2006. 192 p. (in Russ.).
  10. Ronald P.L. Incompressible flow. Hoboken, John Wiley & Sons, Inc., 2013. 869 p.
  11. Ziganshin A.M. Vychislitelnaya gidrodinamika. Postanovka i reshenie zadach v protsessore Fluent [Computational hydrodynamics. Formulation and solution of problems in Fluent processor]. Kazan, Kazanskiy gosudarstvennyy arkhitekturno-stroitelnyy unversitet Publ., 2013. 79 p. (in Russ.).
  12. Moukalled F., Mangani L., Darwish M. The finite volume method in computational fluid dynamics: an advanced introduction with OpenFOAM and Matlab. Cham, Springer International Publishing Switzerland, 2016. 791 p. DOI: https://doi.org/10.1007/978-3-319-16874-6.
  13. Dyachek P.I. Nasosy, ventilyatory, kompressory [Pumps, fans, compressors]. Moscow, ASV Publ., 2013. 432 p. (in Russ.).
  14. Carolus T. Fans: aerodynamic design – noise reduction – optimization. Wiesbaden: Springer Vieweg Wiesbaden, 2022. 253 p. DOI: https://doi.org/10.1007/978-3-658-37959-9.
  15. Solomakhova T.S. Radialnye ventilyatory: aerodinamika i akustika [Centrifugal fans: aerodynamics and acustics]. Moscow, Nauka Publ., 2015. 460 p. (in Russ.).
  16. Miu P. Combine harvesters: theory, modeling, and design. Boca Raton, Taylor & Francis Group, LLC, 2016. 436 p.