Title of the article INFLUENCE OF SUBMICROSCOPIC STRUCTURE OF “COPPER — BERYLLIUM” ALLOY ON SERVICE CHARACTERISTICS OF ELASTIC SENSING ELEMENTS
Authors

TOLSTOY Aliaksandr V., Ph. D. in Phys. and Math., Assoc. Prof., Deputy Head of the Laboratory of Metallurgy in Mechanical Engineering of the R&D Center “Mechanical Engineering Technologies and Processing Equipment”, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section MATERIALS SCIENCE IN MECHANICAL ENGINEERING
Year 2024
Issue 2(67)
Pages 79–87
Type of article RAR
Index UDK 669.35-157:539.26
DOI https://doi.org/10.46864/1995-0470-2024-2-67-79-87
Abstract The dependence of the properties of elastic sensitive elements made of beryllium bronze on the modes of their heat treatment is studied. It is shown that the duration of aging significantly affects the value of nonlinearity
of elastic characteristic, hysteresis, shrinkage of elements and mechanical properties of membrane material (hardness, elastic limit). The relations between submicroscopic structure and properties of elastic elements
are established. The greatest nonlinearity of the elastic characteristic, hysteresis and shrinkage belong to elements subjected to short-term aging at 310–350 °С. With increasing duration of aging, the corresponding
values of the above parameters decrease. For aging temperatures 310–320 °С, the nonlinearity of elasticity characteristics reaches the minimum values after 4–5 h of aging, and for 340 °С — after 3 h. At 350 °С minimum values of nonlinearity are reached after aging duration of 45–60 min. From the obtained data it follows that from the point of view of obtaining the minimum hysteresis and nonlinearity characteristics of aneroid sensing elements made of bronze of БрБНТ-1,9Мг (BrBNT-1.9Mg) grade, heat treatment of membranes should be carried out according to the regimes of 1 h at 350 °С or 3 h at 340 °С.
Keywords beryllium bronze, elastic sensing elements, nonlinearity, hysteresis, shrinkage, aging
  You can access full text version of the article.
Bibliography
  1. Eresko S.P., Zyablikov V.A., Kukushkin E.V. Issledovanie i razrabotka datchika izmereniya davleniya membrannogo tipa s ispolzovaniem platformy Arduino i programmnogo kompleksa Labview [Research and development of a pressure measurement sensor of the membrane type using the Arduino platform and the Labview software package]. Systems. Methods. Technologies, 2019, no. 1(41), pp. 41–46. DOI: https://doi.org/10.18324/2077-5415-2019-1-41-46 (in Russ.).
  2. Samakalev S.S. Uprugie chuvstvitelnye elementy s uluchshennymi metrologicheskimi kharakteristikami [Elastic sensing elements with improved metrological characteristics]. Innovacii i investicii, 2021, no. 10, pp. 86–91 (in Russ.).
  3. Samakalev S.S. Membrannyy uzel datchika davleniya [Pressure sensor diaphragm assembly]. Patent RU, no. 2 733 509 C2, 2020 (in Russ.).
  4. Kablov E.N., Kaskov V.S., Tebyakin A.V., Fokanov A.N., Podurazhnaya V.F. Berillievaya bronza i izdelie, vypolnennoe iz nee [Beryllium bronze and the product made of it]. Patent RU, no. 2 569 286 C1, 2015 (in Russ.).
  5. Andreeva L.E. Uprugie elementy priborov [Elastic elements of the devices]. Moscow, Metallurgiya Publ., 1981. 456 p. (in Russ.).
  6. Ponomarev S.D., Andreeva L.E. Raschet uprugikh elementov mashin i priborov [Calculation of elastic elements of machines and devices]. Moscow, Mashinostroenie Publ., 1980. 376 p. (in Russ.).
  7. Andreev A.I., Zhukov A.V., Yakovishin A.S. Razrabotka metodiki v oblasti proektirovaniya membrannykh datchikov davleniya [Development of a methodology for the design of membrane pressure sensors]. Bulletin PNRPU. Mechanical engineering, materials science, 2022, vol. 24, no. 1, pp. 28–34. DOI: https://doi.org/10.15593/2224-9877/2022.1.04 (in Russ.).
  8. Andreev A.I., Jankin I.N. Povyshenie nadezhnosti datchika davleniya na osnove vybora optimalnoy formy chuvstvitelnogo elementa [Improving the reliability of the pressure sensor based on the choice of the optimal shape of the sensor element]. Materialy 22 Vserossiyskoy nauchno-prakticheskoy konferentsii “Nauchnye issledovaniya i razrabotki poslednego desyatiletiya: vzaimodeystvie proshlogo i sovremennogo” [Proc. 22nd All-Russian scientific and practical conference “Scientific research and development of the last decade: the interaction of the past and the modern”]. Rostov-on-Don, 2019, pp. 74–76 (in Russ.).
  9. State Standard 1452–86. Pruzhiny tsilindricheskie vintovye telezhek i udarno-tyagovykh priborov podvizhnogo sostava zheleznykh dorog. Tekhnicheskie usloviya [Screw cylindrical springs for trucks and draw-and-buffer gears of railway rolling stock. Specifications]. Moscow, IPK Izdatelstvo standartov Publ., 2002. 9 p. (in Russ.).
  10. Tolstoy A.V. Zakonomernosti uprochneniya splava med-berilliy [Patterns of hardening of the copper-beryllium alloy]. Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 2000, no. 4, pp. 8–13 (in Russ.).
  11. Tolstoy A.V. Soprotivlenie splava med-berilliy mikroplasticheskoy deformatsi [Resistance of copper-beryllium alloy to microplastic deformation]. Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 2001, no. 4, pp. 12–17 (in Russ.).
  12. Tolstoy A. V. Vliyanie kholodnoy plasticheskoy deformatsii na strukturu i svoystva splava med-berilliy. 2. Fiziko-mekhanicheskie svoystva deformirovannykh berillievykh bronz [The effect of cold plastic deformation on the structure and properties of the copper-beryllium alloy. 2. Physical and mechanical properties of deformed beryllium bronzes]. Materialy, tekhnologii, instrumenty, 2006, vol. 11, no. 1, pp. 18–24 (in Russ.).
  13. Zaynullina L.I., Sarkeeva E.A., Alexandrov I.V., Valiev R.Z. Vliyanie stareniya na mikrotverdost i elektroprovodnost splava Cu–2 ves.% Be [The influence of aging on microhardness and electrical conductivityof Cu–2 wt.% Be alloy]. Frontier materials & technologies, 2022, no. 3-1, pp. 69–75. DOI: https://doi.org/10.18323/2782-4039-2022-3-1-69-75 (in Russ.).
  14. Osinskaya Yu.V., Pokoev A.V., Emelin I.V. Rentgenograficheskoe issledovanie tonkoy struktury berillievoy bronzy BrB-2, sostarennoy v postoyannom magnitnom pole [X-ray examination of the fine structure of beryllium bronze BrB-2 aged in a constant magnetic field]. Tezisy 12 Mezhdunarodnoy konferentsii “Fazovye prevrashcheniya i prochnost kristallov” (pamyati akademika G.V. Kurdyumova) [Abstracts 12th International conference “Phase transformations and crystal strength” (in memory of Academician G.V. Kurdyumov)]. Chernogolovka, 2022, p. 95 (in Russ.).
  15. Ilichev V.Yu., Yurik E.A. Eksperimentalnoe issledovanie svoystv metallicheskikh uprugikh elementov [Pilot study of properties of metal elastic elements]. Modern high technologies, 2018, no. 12-1, pp. 62–66 (in Russ.).
  16. Borzdyka A.M. Relaksatsiya napryazheniy v metallakh i splavakh [Stress relaxation in metals and alloys]. Moscow, Metallurgiya Publ., 1978. 256 p. (in Russ.).
  17. State Standard R 57173–2016. Raschety i ispytaniya na prochnost. Metody mekhanicheskikh ispytaniy metallov. Ispytaniya na relaksatsiyu napryazheniy metallov i splavov pri osadke. Obshchie trebovaniya [Calculation and strength testing. Methods of mechanical testing of metals. Tests for stress relaxation of metals and alloys at a compression. General requirements]. Moscow, Standartinform Publ., 2016.