Title of the article FEATURES OF MANUFACTURING AND CALCULATION OF GEARS FOR NEW APPLICATIONS (REVIEW)
Authors

SHIL’KO Sergey V., Ph. D. in Eng., Assoc. Prof., Head of the Laboratory “Mechanics of Composites and Biopolymers”, V.A. Belyi Metal Polymer Research Institute of the NAS of Belarus, Gomel, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

STARZHINSKY Viktor E., D. Sc. in Eng., Assoc. Prof., This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

DUBROVSKIY Vladislav V., Researcher, V.A. Belyi Metal Polymer Research Institute of the NAS of Belarus, Gomel, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

SHALOBAEV Evgeniy V., Ph. D. in Eng., Prof., President, International Consortium of Fundamental Education, Saint-Petersburg, Russian Federation, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

CZERNIEC Miron V., D. Sc. in Eng., Prof., Chief Researcher of the Research Part, National Aviation University, Kiev, Ukraine, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section DYNAMICS, DURABILITY OF VEHICLES AND STRUCTURES
Year 2024
Issue 3(68)
Pages 53–62
Type of article RAR
Index UDK 539.4; 621.833.678
DOI https://doi.org/10.46864/1995-0470-2024-3-68-53-62
Abstract New applications and modern methods are described for manufacturing gears made of polymer composites using additive (3D printing) and microelectronics technologies (burning and rapid prototyping from photopolymers). The methods of calculation of the load-bearing capacity, wear and durability of polymer and metal-polymer gears (straight and helical spur, bevel) are considered which are based on methodology of composite mechanics and phenomenological model of fatigue wear during sliding friction. The application of analytical solutions for fast parametric analysis of the stress-strain state of gears is shown, as well as the use of their spatial discretization by finite and boundary elements, taking into account the real geometry of engagement. The use of gears in drives of microelectromechanical systems and the specifics of calculations due to the strengthening of adhesive interaction in tooth contact of miniature gears are considered. The features of the deformation of polymer composites, as structurally inhomogeneous and physically nonlinear materials are noted, which should be taken into account when determining the kinematic accuracy of gears. In this regard, the possibilities of a three-level method are discussed for designing gears made of dispersion-filled polymer composites according to the criteria of strength, deformability and wear resistance. The proposed method provides an iterative procedure for optimizing the material composition and gear parameters, each stage of which includes analytical modeling of the dispersion-reinforced composites used (microlevel), computational and experimental verification of micromechanical models on test samples (mesolevel) and numerical analysis of the stress-strain state of gears by finite element method (macrolevel).
Keywords gears, polymer composites, additive technologies, strength, microelectromechanical systems, deformability, wear resistance, methods of calculation of metal-polymer gears
  You can access full text version of the article.
Bibliography
  1. Starzhinskiy V.E., et al. Elementy privoda priborov. Raschet, konstruirovanie, tekhnologii [Instrument drive elements. Calculation, design, technology]. Minsk, Belorusskaya nauka Publ., 2012. 769 p. (in Russ.).
  2. Algin V.B., et al. Zubchatye peredachi i transmissii v Belarusi: proektirovanie, tekhnologiya, otsenka svoystv [Gears and transmissions in Belarus: design, technology, properties assessment]. Minsk, Belorusskaya nauka Publ., 2017. 406 p. (in Russ.).
  3. VDI 2736 Blatt 1:2016-07. Thermoplastic gear wheels – Materials, material selection, production methods, production tolerances, form design. Germany, 2016. 73 p.
  4. Starzhinskiy V.E., Shilʼko S.V., Shalobaev E.V. Tekhnologiya proizvodstva zubchatykh koles iz termoplastichnykh polimernykh materialov (obzor) [Production technology of gears from thermoplastic polymer materials (review)]. Polymer materials and technologies, 2018, vol. 4, no. 2, pp. 6–31 (in Russ.).
  5. Starzhinsky V.E., Shil’ko S.V., Shalobaev E.V., Rackov M. Polymer gears: design, technology, application (review). Aktualnye voprosy mashinovedeniya, 2019, iss. 8, pp. 195–198.
  6. Urbas U., Zorko D., Vukašinović N., Černe B. Comprehensive areal geometric quality characterisation of injection moulded thermoplastic gears. Polymers, 2022, vol. 14, iss. 4. DOI: https://doi.org/10.3390/polym14040705.
  7. Shalobaev E.V., Perepelitsa F.A., Krasnorutskaya N.S. Additivnye tekhnologii v mashinostroenii [Additive fabrication in mechanical engineering]. 12 mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya “Priborostroenie v 21 veke – 2016. Integratsiya nauki, obrazovaniya i proizvodstva [12th international scientific and technical conference “Instrumentation in the 21st century – 2016. Integration of science, education and production”]. Izhevsk, 2016, pp. 319–323 (in Russ.).
  8. Kotkar T., Masure P., Modake P., Lad C., Patil B. Modelling and testing of spur gear made of different 3D printed materials. International journal of scientific research in science, engineering and technology, 2018, vol. 4, iss. 4, pp. 1389–1394.
  9. Rohit A., Sasank G.S., Kishore P.V.R.C. Design and fabrication of spur gear using 3D printing technology. International research journal of engineering and technology, 2020, vol. 7, iss. 6, pp. 454–464.
  10. Perepelitsa F.A., Shalobaev E.V., Shil’ko S.V. Otechestvennoe programmnoe obespechenie dlya additivnykh tekhnologiy [Domestic software for additive technologies]. Mezhdunarodnyy nauchno-prakticheskiy simpozium “Perspektivy razvitiya additivnykh tekhnologiy v Respublike Belarus” [International scientific and practical symposium “Prospects for the development of additive technologies in the Republic of Belarus”]. Minsk, 2017, pp. 128–135 (in Russ.).
  11. Starzhinsky V., Shil’ko S., Shalobaev E., Rackov M., Algin V., Dubrovskii V. Plastic gears: state-of-the-art design and technology (review). Proc. 7th international BAPT conference “Power Transmissions 2020”. Borovets, 2020, pp. 27–34.
  12. Shil’ko S.V., Ryabchenko T.V., Panin S.V., Shalobaev E.V. 3D-pechat kak “prirodopodobnyy” sposob proizvodstva optimizirovannykh endoprotezov [3D printing as a “nature-like” method for producing optimized endoprostheses]. Doklady 4 Vserossiyskogo nauchnogo seminara s mezhdunarodnym uchastiem “Mezhdistsiplinarnye problemy additivnykh tekhnologiy” [Proc. 4th All-Russian scientific seminar with international participation “Interdisciplinary problems of additive technologies”]. Tomsk, 2019, pp. 94–99 (in Russ.).
  13. Demidov G.A., et al. Primenenie polimernykh svyazuyushchikh pri izgotovlenii keramicheskikh izdeliy metodami additivnykh tekhnologiy [Application of polymeric binders at manufacturing ceramic products by additive technology methods]. Polymer materials and technologies, 2019, vol. 5, no. 3, pp. 85–90 (in Russ.).
  14. Kapelevich A., McNamara T. Plastic gearing for small engine applications. SAE Technical Paper, no. 2006-32-0038, 2006. DOI: https://doi.org/10.4271/2006-32-0038.
  15. Tolochko N.K., Khlopkov Yu.V., Spiridonov E.P., Linevich A.V. Materialy i istochniki izlucheniya dlya stereolitografii (obzor) [Materials and radiation sources for stereolithography (review)]. Materialy, tekhnologii, instrumenty, 2000, vol. 5, no. 3, pp. 35–38 (in Russ.).
  16. Shil’ko S.V., Starzhinskiy V.E. Razrabotka tekhnologii zubchatykh koles dlya mikromekhanicheskikh sistem [Development of gear technology for micromechanical systems]. Mezhdunarodnyy nauchnyy seminar “Sovremennye informatsionnye tekhnologii. Problemy issledovaniya, proektirovaniya i proizvodstva zubchatykh peredach” [International scientific seminar “Modern information technologies. Problems of research, design and production of gears”]. Izhevsk, 2001, pp. 159–162 (in Russ.).
  17. Shalobaev E.V., Starzhinskiy V.E., Shil’ko S.V. Tekhnologiya izgotovleniya zubchatykh koles i peredach dlya mikroelektromekhanicheskikh sistem. Zubchatye mikromekhanizmy MEMS: opyt proizvodstva i postanovka zadach na perspektivu [Manufacture technologies of cog-wheels and drives for microelectromechanical systems. Cogged micromechanisms of MEMS: the experiment of the production and the statement of the problem on the perspective]. Microsystems technology, 2003, no. 10, pp. 2–5 (in Russ.).
  18. Starzhinskiy V.E., Kudinov A.T., Osipenko S.A., Li S.Ch. Analiz metodov geometricheskogo rascheta parametrov formoobrazuyushchikh matrits dlya plastmassovykh zubchatykh koles [Analysis of methods for geometric calculation of parameters of forming matrices for plastic gears]. Vestnik mashinostroeniya, 1995, no. 6, pp. 3–7 (in Russ.).
  19. Tsukamoto N. Investigation about the strength of plastic gears: 4th report; abrasion and state of tooth profile change of driven nylon gear. Bulletin of JSME, 1983, vol. 26, iss. 219, pp. 1661–1669. DOI: https://doi.org/10.1299/jsme1958.26.1661.
  20. Kragelskiy I.V., Dobychin M.N., Kombalov V.S. Osnovy raschetov na trenie i iznos [Basics of friction and wear calculations]. Moscow, Mashinostroenie Publ., 1977. 526 p. (in Russ.).
  21. Blagodarnyy V.M. Raschet melkomodulnykh zubchatykh peredach na iznos i prochnost [Calculation of fine-module gears for wear and strength]. Moscow, Mashinostroenie Publ., 1985. 128 p. (in Russ.).
  22. Spravochnik po tribotekhnike. T. 1. Teoreticheskie osnovy [Handbook of tribology. Vol. 1. Theoretical foundations]. Moscow, Mashinostroenie Publ., 1989. 400 p. (in Russ.).
  23. Shil’ko S.V., Starzhinsky V.E. Raschet iznosostoykosti zubchatoy peredachi s kolesami iz armirovannykh kompozitsionnykh materialov [Calculation of wear resistance of gears with wheels made of reinforced composite materials]. Friction and wear, 1993, vol. 14, no. 3, pp. 444–451 (in Russ.).
  24. Chernets’ M.V., Yarema R.Ya., Chernets’ Yu.M. A method for the evaluation of the influence of correction and wear of the teeth of a cylindrical gear on its durability and strength. Part 1. Service live and wear. Materials science, 2012, vol. 48, iss. 3, pp. 289–300. DOI: https://doi.org/10.1007/s11003-012-9505-y.
  25. Chernets M.V., Chernets Yu.M. Metod rascheta tribotekhnicheskikh kharakteristik tsilindricheskoy kosozuboy tyagovoy peredachi lokomotiva VL-10 [Calculation method of tribotechnical characteristics of tractive helical cylindrical gear of locomotive VL-10]. Friction and wear, 2016, vol. 37, no. 6, pp. 728–736 (in Russ.).
  26. Chernets M.V., Shil’ko S.V., Pashechko M.I., Barshch M. Iznosostoykost steklo- i uglenapolnennykh poliamidnykh kompozitov dlya metallopolimernykh zubchatykh peredach [Wear resistance of glass- and carbon-filled polyamide composites for metal-polymer gears]. Friction and wear, 2018, vol. 39, no. 5, pp. 457–461 (in Russ.).
  27. Chernets M., Kornienko A. Prediction of the service life of metal-polymer gears made of glass and carbon fibre-reinforced polyamide, considering the impact of height correction. Advances in science and technology research journal, 2020, vol. 14, iss. 3, pp. 15–21. DOI: https://doi.org/10.12913/22998624/124553.
  28. Chernets M., Shil’ko S., Kornienko A. Calculated assessment of contact strength, wear and resource of metal-polymer gears made of dispersion-reinforced composites. Applied engineering letters, 2021, vol. 6, no. 2, pp. 54–61. DOI: https://doi.org/10.18485/aeletters.2021.6.2.2.
  29. Goldfarb V.I., Lunin S.V., Trubachov E.S. Direct digital simulation for gears. Volume 1. Izhevsk, 2004. 75 p.
  30. Shil’ko S.V., Starzhinsky V.E., Petrokovets E.M., Chernous D.A. Dvukhurovnevyy metod rascheta na prochnost i deformativnost zubchatykh koles iz dispersno-armirovannykh kompozitov [Two-level calculation method on strength and deformation of gears from fibre-reinforced composites]. Bulletin of the National Technical University “KhPI”, 2012, iss. 35, pp. 173–178 (in Russ.).
  31. Shil’ko S.V., Starzhinskii V.E., Petrokovets E.M., Chernous D.A. Dvukhurovnevyy metod rascheta tribosopryazheniy iz dispersno-armirovannykh kompozitov. Chast 1 [Two-level calculation method for tribojoints made of disperse-reinforced composites. Part 1]. Trenie i iznos, 2013, vol. 34, no. 1, pp. 82–86 (in Russ.).
  32. Shil’ko S.V., Starzhinsky V.E., Petrokovets E.M., Chernous D.A. Dvukhurovnevyy metod rascheta tribosopryazheniy iz dispersno-armirovannykh kompozitov: Chast 2 [Two-level calculation method for tribojoints made of dispersion-reinforced composites: Part 2]. Trenie i iznos, 2014, vol. 35, no. 1, pp. 52–61 (in Russ.).
  33. Shil’ko S.V., Starzhinsky V.E., Babin A.P., Zernin M.V. Modelirovanie kontaktnogo vzaimodeystviya v sopryazheniyakh mikroelektromekhanicheskikh system [Modeling of contact interaction in interfaces of microelectromechanical systems]. Bulletin of Sukhoi State Technical University of Gomel, 2002, nos. 3–4, pp. 31–38 (in Russ.).
  34. Shil’ko S.V., Starzhinsky V.E., Babin A.P., Zernin M.V., Shalobaev E.V. Osobennosti rascheta sopryazheniy komponentov MEMS [The singularities of the conjunctions calculation of MEMS components]. Microsystems technology, 2003, no. 6, pp. 16–20 (in Russ.).
  35. Pogačnik N., Tavčar J. An accelerated multilevel test and design procedure for polymer gears. Materials & design, 2015, vol. 65, pp. 961–973. DOI: https://doi.org/10.1016/j.matdes.2014.10.016.
  36. Shil’ko S.V., Ryabchenko T.V., Dubrovskiy V.V. Primenenie dvukhurovnevogo prochnostnogo analiza pri podgotovke CAD-modeley dlya 3D-pechati gradientnykh materialov i izdeliy [Application of two-level strength analysis in preparing CAD models for 3D printing of gradient materials and products]. Materialy nauchno-tekhnicheskoy konferentsii “Additivnye tekhnologii, materialy i konstruktsii” [Proc. scientific and technical conference “Additive technologies, materials and structures”]. Grodno, 2016, pp. 140–146 (in Russ.).
  37. Shilʼko S.V., Ryabchenko T.V., Gavrilenko S.L., Shalobaev E.V. Primenenie kompyuternoy mekhaniki pri podgotovke CAD modeley dlya 3D-pechati gradientnykh materialov i izdeliy [Application of computer mechanics in preparing CAD models for 3D printing of gradient materials and products]. Mezhdunarodnyy nauchno-prakticheskiy simpozium “Perspektivy razvitiya additivnykh tekhnologiy v Respublike Belarus” [International scientific and practical symposium “Prospects for the development of additive technologies in the Republic of Belarus”]. Minsk, 2017, pp. 194–207 (in Russ.).
  38. Starzhinsky V.E., Shil’ko S.V., Petrokovets E.M., Supin V.V., Shalobaev E.V., Gutman Y.I. Computer-aided design and adoption of standard software on gearing. IOP Conference series: materials science and engineering, 2018, vol. 393. DOI: https://doi.org/10.1088/1757-899X/393/1/012044.
  39. Medunetskiy V.M., Shalobaev E.V., Zinkov V.A., Dang N.T. Metodika proektirovaniya i rascheta malogabaritnykh zubchatykh peredach iz kompozitsionnykh materialov [Methodology of design and analysis of small gears from composite materials]. Journal of instrument engineering, 2019, vol. 62, no. 2, pp. 192–194. DOI: https://doi.org/10.17586/0021-3454-2019-62-2-192-194 (in Russ.).
  40. Cathelin J., de Vaujany J.-P., Guingand M., Chazeau L. Loaded behaviour of gear made of fibre reinforced PA6. Gears; International conference on gears: Europe invites the world. Munich, 2013, pp. 1221–1234.
  41. Tunalioglu M.S., Agca B.V. Wear and service life of 3-D printed polymeric gears. Polymers, 2022, vol. 14, iss. 10. DOI: https://doi.org/10.3390/polym14102064.
  42. Polanec B., Zupanič F., Bončina T., Tašner F., Glodež S. Experimental Investigation of the wear behaviour of coated polymer gears. Polymers, 2021, vol. 13, iss. 20. DOI: https://doi.org/10.3390/polym13203588.
  43. Chen J.H., Juarbe F.M., Hanley M.A. Factors affecting fatigue strength of nylon gears. Journal of mechanical design, 1981, vol. 103, iss. 2, pp. 543–548. DOI: https://doi.org/10.1115/1.3254951.
  44. Letzelter E., Guingand M., de Vaujany J.-P., Schlosser P. A new experimental approach for measuring thermal behaviour in the case of nylon 6/6 cylindrical gears. Polymer testing, 2010, vol. 29, iss. 8, pp. 1041–1051. DOI: https://doi.org/10.1016/j.polymertesting.2010.09.002.
  45. Breeds A.R., Kukureka S.N., Mao K., Walton D., Hooke C.J. Wear behaviour of acetal gear pairs. Wear, 1993, vol. 166, iss. 1, pp. 85–91. DOI: https://doi.org/10.1016/0043-1648(93)90282-Q.
  46. Lin A.-D., Kuang J.-H. Dynamic interaction between contact loads and tooth wear of engaged plastic gear pairs. International journal of mechanical sciences, 2008, vol. 50, iss. 2, pp. 205–213. DOI: https://doi.org/10.1016/j.ijmecsci.2007.07.002.
  47. Li W., Wood A., Weidig R., Mao K. An investigation on the wear behaviour of dissimilar polymer gear engagements. Wear, 2011, vol. 271, nos. 9–10, pp. 2176–2183. DOI: http://dx.doi.org/10.1016/j.wear.2010.11.019.
  48. Mao K., et al. The wear and thermal mechanical contact behaviour of machine cut polymer gears. Wear, 2015, vols. 332–333, pp. 822–826. DOI: https://doi.org/10.1016/j.wear.2015.01.084.
  49. Tavčar J., Grkman G., Duhovnik J. Accelerated lifetime testing of reinforced polymer gears. Journal of advanced mechanical design, systems, and manufacturing, 2018, vol. 12, no. 1. DOI: https://doi.org/10.1299/jamdsm.2018jamdsm0006.
  50. Singh P.K., Siddhartha, Singh A.K. An investigation on the thermal and wear behavior of polymer based spur gears. Tribology international, 2018, vol. 118, pp. 264–272. DOI: https://doi.org/10.1016/j.triboint.2017.10.007.
  51. Yu T., Zhang Z., Song S., Bai Y., Wu D. Tensile and flexural behaviors of additively manufactured continuous carbon fiber-reinforced polymer composites. Composite structures, 2019, vol. 225. DOI: https://doi.org/10.1016/j.compstruct.2019.111147.
  52. Zhang Y., Purssell C., Mao K., Leigh S. A physical investigation of wear and thermal characteristics of 3D printed polyamide spur gears. Tribology international, 2020, vol. 141. DOI: https://doi.org/10.1016/j.triboint.2019.105953.
  53. Taywade A.N., Arajpure V.G. Design and analysis of plastic gear and its comparison with metallic gear in the gear box of moped. International Journal of Research in Mechanical Engineering, 2015, vol. 3, iss. 2, pp. 1–6.