Title of the article FEATURES OF LIMITING STATE DIAGRAMS FOR ACTIVE SYSTEMS UNDER MECHANO-SLIDING FATIGUE
Authors

BOGDANOVICH Alexander V., D. Sc. in Eng., Prof., Professor of the Department of Theoretical and Applied Mechanics, Belarusian State University, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section TRIBO-FATIGUE SYSTEMS MECHANICS
Year 2024
Issue 3(68)
Pages 88–98
Type of article RAR
Index UDK 539.43
DOI https://doi.org/10.46864/1995-0470-2024-3-68-88-98
Abstract Experimental diagrams of limiting states of active systems under conditions of mechano-sliding fatigue are presented, as well as their analytical description. A graphical representation of the proposed equations for limit stresses (limits of mechano-sliding fatigue) is given based on the energy criterion of limiting states in the form of multicriteria diagrams of limiting states of various active systems (the ordinate axis on them serves as a strength scale, and the abscissa axis – as a tribological scale). Analysis of the proposed equations for limiting stresses, experimental diagrams of limiting states of different active systems showed that: 1) processes of friction and wear, depending on the conditions of their implementation, can significantly reduce, as well as significantly increase, the fatigue resistance of the active system; 2) cyclic stresses, depending on the test conditions, can both significantly reduce and increase the wear resistance of the active system.
Keywords mechano-sliding fatigue, active system, limiting state diagram, fatigue limit, energy criterion, direct effect, reverse effect
  You can access full text version of the article.
Bibliography
  1. State Standard 30638-99. Tribofatika. Terminy i opredeleniya [Tribo-fatigue. Terms and definitions]. Minsk, Mezhgosudarstvenyy Sovet po standartizatsii, metrologii i sertifikatsii Publ., 1999. 24 p. (in Russ.).
  2. Sosnovskiy L.A. Mekhanika iznosoustalostnogo povrezhdeniya [Mechanics of wear-fatigue damage]. Gomel, Belorusskiy gosudarstvennyy universitet transporta Publ., 2007. 434 p. (in Russ.).
  3. Bogdanovich A.V. Prognozirovanie predelnykh sostoyaniy silovykh sistem [Prediction of limiting states of active systems]. Grodno, Grodnenskiy gosudarstvennyy universitet imeni Yanki Kupaly Publ., 2008. 371 p. (in Russ.).
  4. Sosnovskiy L.A., Sherbakov S.S., Khonsari M.M., Bogdanovich A.V. From fatigue and tribology to tribo-fatigue. International journal of materials and structural integrity, 2021, vol. 14, nos. 2/3/4, pp. 164–237. DOI: https://dx.doi.org/10.1504/IJMSI.2021.125815.
  5. Skakov A.P., Shkolnik L.M. Ob ispytaniyakh na vynoslivost pri odnovremennom deystvii peremennogo izgiba i treniya [On endurance tests under the simultaneous action of alternating bending and friction]. Zavodskaya laboratoriya, 1951, vol. 17, no. 10, pp. 1254–1258 (in Russ.).
  6. Draygor G.A., Valchuk G.I. Vliyanie iznosa na ustalostnuyu prochnost stali s uchetom masshtabnogo faktora [The influence of wear on the fatigue strength of steel taking into account the scale factor]. Kiev, AN USSR Publ., 1962. 111 p. (in Russ.).
  7. Nagao T., Pamies-Teixeira J.J., Suh N.P. Behavior of medium carbon steel under combined fatigue and wear. Wear, 1977, vol. 44, iss. 1, pp. 101–108. DOI: https://doi.org/10.1016/0043-1648(77)90088-6.
  8. Bezruchko V.P., Korotya A.S. Vliyanie treniya v abrazivnoy srede na ustalostnuyu prochnost stali 30KhGSNA i 12KhN3A posle borirovaniya i tsementatsii [The influence of friction in an abrasive environment on the fatigue strength of steel 30KhGSNA and 12KhN3A after boriding and carburizing]. Problemy prochnosti, 1977, no. 3, pp. 42–45 (in Russ.).
  9. Lizanets M.V., Pokhmurskiy V.I., Karpenko G.V. Vliyanie treniya na ustalost stali [Effect of friction on steel fatigue]. Physicochemical mechanics of materials, 1969, vol. 5, no. 5, pp. 629–630 (in Russ.).
  10. Yahata N., Hirata T., Kato T., Watanabe M. Effect of sliding friction on the fatigue strength of a medium carbon steel. Wear, 1988, vol. 121, iss. 2, pp. 197–209. DOI: https://doi.org/10.1016/0043-48(88)90043-9.
  11. Mahzoon F., Behgozin S.A., Bahrololoom M.E., Javadpour S. Study the fatigue-wear behavior of a plasma electrolytic nitrocarburized (PEN/C) 316L stainless steel. Journal of materials engineering and performance, 2012, vol. 21, iss. 8, pp. 1751–1756. DOI: https://doi.org/10.1007/s11665-011-0072-4.
  12. Lizanets M.V., Pokhmurskiy V.I. Izmenenie ustalostnoy prochnosti stali pri trenii v zavisimosti ot kachestva smazki [Change in the fatigue strength of steel during friction depending on the quality of the lubricant]. Physicochemical mechanics of materials, 1970, vol. 6, no. 2, pp. 99–100 (in Russ.).
  13. Sosnovskiy L.A. Nadezhnost i dolgovechnost elementov silovogo metallopolimernogo tribosopryazheniya v protsesse iznosoustalostnykh ispytaniy [Reliability and durability of power metal-polymer tribological coupling elements during wear-fatigue testing]. Nadezhnost i dolgovechnost mashin i sooruzheniy, 1986, iss. 9, pp. 93–102 (in Russ.).
  14. Bogdanovich A., Lis I. Experimental research of back effect for mechano-sliding fatigue of the 0.45 % carbon steel – siluminum active system. Strength of materials, 2011, vol. 43, iss. 4, pp. 405–410. DOI: https://doi.org/10.1007/s11223-011-9309-6.
  15. Lis I.N., Bogdanovich A.V. Eksperimentalnoe issledovanie zakonomernostey obratnogo effekta metallopolimernoy silovoy sistemy pri friktsionno-mekhanicheskoy ustalosti [Experimental study of the patterns of the reverse effect of a metal-polymer force system during mechano-sliding fatigue]. Trudy 6 Mezhdunarodnogo simpoziuma po tribofatike МSТF 2010 “Tribofatika = Tribo-fatigue” [Proc. 6th international symposium on tribo- fatigue “Tribofatika = Tribo-fatigue”]. Minsk, 2010, part 1, pp. 707–712 (in Russ.).
  16. Sosnovskiy L.A. Energeticheskiy podkhod k analizu povrezhdennosti silovoy sistemy [Energy approach to active system damage analysis]. Izvestiya Akademii nauk Belorusskoy SSR. Seriya fiziko-tekhnicheskikh nauk, 1991, no. 4, pp. 87–92 (in Russ.).
  17. Sosnovskiy L.A., Bogdanovich A.V., Lis I.N. Energeticheskiy analiz predelnykh sostoyaniy silovoy sistemy “tsilindricheskiy obrazets iz stali 45 – kontrobrazets v vide chastichnogo vkladysha iz silumina” pri friktsionno-mekhanicheskoy ustalosti (obratnyy effekt) [An energetic analysis of limiting states for the 0.45 % carbon steel – siluminum active system at mechano-sliding fatigue (back effect)]. Mechanics of machines, mechanisms and materials, 2014, no. 3(28), pp. 12–16 (in Russ.).
  18. Lis I.N., Bogdanovich A.V. Analiz predelnykh sostoyaniy silovoy sistemy “stal 45 – silumin” pri friktsionno-mekhanicheskoy ustalosti po energeticheskomu kriteriyu [The analysis of limiting states of power system of “45 carbon steel – siluminum” at frictional and mechanical fatigue on energetic criterion]. Vesnik of Yanka Kupala State University of Grodno. Series 6. Engineering science, 2014, no. 2(175), pp. 28–35 (in Russ.).
  19. Lis I.N., Bogdanovich A.V. Tribofaticheskie sistemi, rabotayuschie v usloviyah friktsionno-mehanicheskoy ustalosti: prognozirovanie dolgovechnosti na osnove energeticheskogo kriteriya [Tribo-fatigue systems operating under the conditions of mechano-sliding fatigue: forecasting of durability on the basis of energy criterion]. Mechanics of machines, mechanisms and materials, 2020, no. 3(52), pp. 89–94. DOI: https://doi.org/10.46864/1995-0470-2020-3-52-89-94 (in Russ.).
  20. Makhutov N.A., et. al. Opredelyayushchie faktory bezopasnosti tekhnicheskikh sistem v usloviyakh kontaktnykh vzaimodeystviy nagruzhennykh elementov [Governing factors of safety of technical systems at the conditions of contact interactions of loaded parts]. Safety and emergency problems, 2022, no. 2, pp. 5–14. DOI: https://doi.org/10.36535/0869-4176-2022-02-1 (in Russ.).
  21. Lis I.N., Bogdanovich A.V. Ob algoritmakh raschetno-eksperimentalnoy otsenki dolgovechnosti i nadezhnosti tribofaticheskikh sistem, rabotayushchikh v usloviyakh friktsionno-mekhanicheskoy ustalosti [On algorithms for the computational and experimental estimation of the lifetime and reliability of tribo-fatigue systems operating under conditions of mechano-sliding fatigue]. Aktualnye voprosy mashinovedeniya, 2022, iss. 11, pp. 185–190 (in Russ.).
  22. Lis I.N., Bogdanovich A.V. Prognozirovanie dolgovechnosti silovoy sistemy, rabotayushchey v usloviyakh friktsionno-mekhanicheskoy ustalosti na primere podshipnika kolenchatogo vala [Prediction of the active system durability operating under mechano-sliding fatigue using the example of a crankshaft bearing]. Aktualnye voprosy mashinovedeniya, 2021, iss. 10, pp. 129–135 (in Russ.).
  23. Lis I.N. Prognozirovanie dolgovechnosti podshipnika opory motovila zernouborochnogo kombayna, rabotayushchego pri neregulyarnom nagruzhenii v usloviyakh friktsionno-mekhanicheskoy ustalosti [Prediction of the durability of the grain harvester reel support bearing operating under irregular load under mechano-sliding fatigue]. Mechanics of machines, mechanisms and materials, 2022, no. 3(60), pp. 35–41. DOI: https://doi.org/10.46864/1995-0470-2022-3-60-35-41 (in Russ.).