Title of the article Crack nucleation in a circular disk under force load
Authors Kalantarly N. M., PhD in Physical and Mathematical Sciences, Associated Professor of the Institute of Mathematics and Mechanics of the NAS of Azerbaijan, Baku, Azerbaijan
In the section MECHANICS OF DEFORMED SOLIDS
Year 2014 Issue 4 Pages 53-59
Type of article RAR Index UDK 539.375 Index BBK  
Abstract An isotropic elastic circular disc loaded on contour by two concentrated moments is considered. A model of prefracture zone with bonds between the faces is used. Relations for definition of critical value of the external load under which in the disc cracks occurs are obtained.
Keywords isotropic circular disc, prefracture zone, crack nucleation, cohesive forces
  You can access full text version of the article
Bibliography
  • Bolotin V.V. Mekhanika zarozhdeniia treshchin i nachal'nogo razvitiia ustalostnykh treshchin [Mechanics of crack nucleation and initial development of fatigue cracks]. FKhMM, 1986, vol. 22, no. 1, pp. 18-23.

  • Mirsalimov V.M. Zarozhdenie defekta tipa treshchiny vo vtulke kontaktnoi pary [Initiation of defects such as a crack in the bush of contact pair]. Matematicheskoe modelirovanie - Mathematic simulation, 2005, vol. 17, no. 2, pp. 35-45.

  • Mirsalimov V.M. K resheniiu zadachi mekhaniki kontaktnogo razrusheniia o zarozhdenii i razvitii treshchiny so sviaziami mezhdu beregami vo vtulke friktsionnoi pary [To the solution of the mechanics problem of contact destruction about incipience and development of crack with contacts between sides in plug of friction pair]. PMM, 2007, vol. 71, no. 1, pp. 132-151.

  • Mir-Salim-zade M.V. Zarozhdenie treshchin v perforirovannoi podkreplennoi plastine [Nucleation of cracks in stiffened perforated plate]. Prikladnaia mekhanika i tekhnicheskaia fizika - Applied Mechanics and Technical Physics, 2008, vol. 49, no. 6, pp. 170-180.

  • Vagari A.R., Zarozhdenie treshchin v perforirovannom teplovydeliaiushchem massive, uprugie svoistva kotorogo zavisiat ot temperatury [Crack initiation in a perforated heat-emitting array which elastic properties depend on the temperature]. Prikladnaia mekhanika i tekhnicheskaia fizika - Applied Mechanics and Technical Physics, no. 4, pp. 138-148.

  • Zolgharnein E., Mirsalimov V.M. Nucleation of a Crack under Inner Compression of Cylindrical Bodies. Acta Polytechnica Hungarica, 2012, vol. 9, no. 2, pp. 169-183.

  • Akhmedova M.V. Zarozhdenie treshchin v tonkoi plastine, oslablennoi periodicheskoi sistemoi krivolineinykh otverstii [Nucleation of cracks in a thin plate weakened by a periodic system of curved holes]. Vestnik CHGPU im. I.Ia. Iakovleva, seriia: Mekhanika predel'nogo sostoianiia - Herald of CHSPU n.a. I.Ia. Iakovleva, 2013, no. 4(18), pp. 3-14.

  • Iskenderov R.A. Zarozhdenie treshchiny pri poperechnom izgibe izotropnoi plastiny, oslablennoi periodicheskoi sistemoi krugovykh otverstii [Nucleation of a crack in transverse isotropic plate bending weakened by a periodic system of circular holes]. Stroitel'naia mekhanika inzhenernykh konstruktsii i sooruzhenii - Structural Mechanics of Engineering Structures and Buildings, 2013, no. 3, pp. 18-28.

  • Mirsalimov V.M., Hasanov Sh.G. Modeling of crack nucleation in covering on an elastic base. International Journal of Damage Mechanics, 2014, vol. 23(3), pp. 430-450.

  • Zul'fugarov E.I. Modelirovanie zarozhdeniia iskrivlennoi treshchiny v tormoznom barabane avtomobilia [Simulation of curved cracks in the brake drum of a car]. Fundamental'nye i prikladnye problemy tekhniki i tekhnologii - Fundamental and applied problems of engineering and technology, 2014, no. 1(303), pp. 24-30.

  • Cherepanov G.P. Methods of Fracture Mechanics. Solid Matter Physics Series: Solid Mechanics and Its Applications, 1997, vol. 51, XIII, 322 p.

  • Mohammed I., Liechti K.M. Cohesive zone modeling of crack nucleation at bimaterial corners. Journal of the Mechanics and Physics of Solids, 2000, vol. 48, no. 4, pp. 735-764.

  • Yang B. Examination of free-edge crack nucleation around an open hole in composite laminates. International Journal of Fracture, 2002, vol. 115, no. 2, pp. 173-191.

  • Yang Q., Cox B. Cohesive models for damage evolution in laminated composites. International Journal of Fracture, 2005, vol. 133, no. 2, pp. 107-137.

  • Lipperman F., Ryvkin M., Fuchs M.B. Nucleation of cracks in two-dimensional periodic cellular materials. Computational Mechanics, 2007, vol. 39, no. 2, pp. 127-139.

  • Gutkin M.Yu., Ovid’ko I.A., Skiba N.V. Effect of inclusions on heterogeneous crack nucleation in nanocomposites. Physics of the Solid State, 2007, vol. 49, no. 2, pp. 261-266.

  • Gol'dshtein R.V., Perel'muter M.N. Modelirovanie treshchinostoikosti kompozitsionnykh materialov [Simulation of fracture toughness of composite materials]. Vychislitel'naia mekhanika sploshnykh sred - Computational mechanics of continuum, 2009, vol. 2, no. 2, pp. 22-39.

  • Novikov E.V. [et al.]. Klastero- i treshchinoobrazovanie v kompozitakh [Cluster- and crack formation in composite materials]. Mezhdunarodnyi tekhniko-ekonomicheskii zhurnal - International Techno-Economic Journal, 2012, no. 5, pp. 96-99.

  • Chen Z., Butcher C. Estimation of the Stress State Within Particles and Inclusions and a Nucleation Model for Particle Cracking. Micromechanics Modelling of Ductile Fracture: Solid Mechanics and Its Applications, vol. 195, 2013, pp. 223-243.

  • Gasanov F.F. Zarozhdenie treshchin v izotropnoi srede s periodicheskoi sistemoi krugovykh otverstii, zapolnennykh zhestkimi vkliucheniiami, pri prodol'nom sdvige [Nucleation of cracks in an isotropic medium with a periodic system of circular holes filled with rigid inclusions with longitudinal shear]. Stroitel'naia mekhanika inzhenernykh konstruktsii i sooruzhenii - Structural Mechanics of Engineering Structures and Buildings, 2014, no. 3, pp. 44-50.

  • Gasanov F.F. Zarozhdenie treshchiny v kompozite, armirovannom odnonapravlennymi ortotropnymi voloknami pri prodol'nom sdvige [Nucleation of the crack in the composite reinforced with unidirectional orthotropic fiber under longitudinal shear]. Mekhanika mashin, mekhanizmov i materialov – Mechanics of machines, mechanisms and materials, 2014, no. 2(27), pp. 45-50.

  • Muskhelishvili N.I. Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti [Some basic problems of the mathematical theory of elasticity]. Moscow, Nauka, 1966. 707 p.

  • Panasiuk V.V., Savruk M.P., Datsyshin A.P. Raspredelenie napriazhenii okolo treshchin v plastinakh i obolochkakh [Stress distribution around cracks in plates and shells]. Kiev, Nauk. dumka, 1976. 443 p.

  • Mirsalimov V.M. Neodnomernye uprugoplasticheskie zadachi [Multidimensional elastoplastic problems]. Moscow, Nauka, 1987. 256 p.

  • Il'iushin A.A. Plastichnost' [Formability]. Moscow, L.: Gostekhizdat, 1948. 376 p.