Title of the article



Vityaz P.A., Academician of the NAS of Belarus, Doctor of Technical Sciences, Professor, Head of the Staff of the NAS of Belarus, Head of the Department of Mechanical Engineering and Metallurgy, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.

Ilyuschenko A.F., Corresponding Member of the NAS of Belarus, Doctor of Technical Sciences, Professor, General Director of SSPA Powder Metallurgy of NAS of Belarus, Minsk, Republic of Belarus

Kheifetz M.L., Doctor of Technical Sciences, Professor, Deputy Academician-Secretary of the Department of Physics and Technical Sciences of the NAS of Belarus, Scientific Director of the Laboratory of Technological Complexes SSPA "Center" of the NAS of Belarus, Minsk, Republic of Belarus

Solntsev K.A., Academician of the RAS, Doctor of Chemistry, Professor, Deputy President of the RAS - Managing Director of the RAS, Director of the Institute of Metallurgy and Materials Science n.a. A.A. Baikov RAS, Moscow, Russia

Barinov S.M., Corresponding Member of the NAS of Belarus, Doctor of Technical Sciences, Deputy Director for Research, Institute of Metallurgy and Materials Science n.a. A.A. Baikov of the RAS, Minsk, Republic of Belarus

Kolmakov A.G., Doctor of Technical Sciences, Professor, Deputy Director for Scientific Work of the Institute of Metallurgy and Materials Science n.a. A.A. Baikov RAS, Moscow, Russia

In the section NANOMECHANICS
Year 2012 Issue 1 Pages 53-63
Type of article RAR Index UDK 621.9:536.75 Index BBK  

The state diagrams elements analysis of the physicochemical system states according to the suggested topological model enabled to define the self-organization principles at pattern and phase formation. The topological model elements have been studied on the ground of the undissociated compound stages being isolated from the dissociated ones with a singular point formed on the state diagram. The rational stage sequence of structures, phases and layers interfacing has been viewed from the structure and energy positions: fractal surface structure growth; an increased number of fractal base elements; fractal meander complication; layer percolation in the interfacial area; fractal degeneration. A multifractal approach to the different structures quantification has been recommended which was realized through the measure of set approximating the structure under study. Wavelet analysis has been suggested to describe the nanostructures of the materials with the features and parameters of the wavelet analysis influencing the material description being defined.


nanostructured materials, clusters, fractals, nonequilibrium thermodynamics, wavelet analysis

  You can access full text version of the article
  • Blatter K. Vejvlet-analiz. Osnovy teorii [Wavelet analysis. Fundamentals of the theory]. Moscow, 2004. 280 p.
  • Levkovich-Masljuk L., Pereberin A. Vvedenie v vejvlet-analiz [Introduction to Wavelet Analysis]. Moscow, GrafiKon’99, 1999. 280 p.
  • Kolmakov A.G., Zverev A.A. Primenenie sovremennyh matematicheskih metodov dlja sistemnogo opisanija struktur materialov [Application of modern mathematical methods for systematic description of materials structures]. Sb. nauch. tr. Institutu metallurgii i materialovedenija im. A.A. Bajkova RAN - 70 let: [Coll. of sci. papers. Institute of Metallurgy and Materials Science. A.A. Baykova RAS - 70 years]. Moscow, Interkontakt Nauka, 2008, pp. 660-675.
  • Vasilev A.S. [et al.]. Tehnologicheskie osnovy upravlenija kachestvom mashin: biblioteka tehnologa [Technological bases of quality management of machines: technology library]. Moscow, Mashinostroenie, 2003. 256 p.
  • Kheifec M.L. Proektirovanie processov kombinirovannoj obrabotki: biblioteka tehnologa [Design of combined treatment process: technology library]. Moscow, Mashinostroenie, 2005. 272 p.
  • Kheifec M.L. Formirovanie svojstv materialov pri poslojnom sinteze detalej [Formation of the materials properties of at the layered parts synthesis]. Novopolock, PGU, 2001. 156 p.
  • Gordienko A.I. [et al.]. Sinergeticheskie aspekty fiziko-himicheskih metodov obrabotki [Synergistic aspects of physical and chemical methods of treatment]. Minsk, FTI NANB, 2000. 172 p.
  • Akulovich L.M., Ivashko V.S., Kheifec M.L. Samoorganizacija processov uprochnjajushhej obrabotki [Self-organization of the processes of hardening treatment]. Minsk: Narodnaja kniga, 2008. 236 p.
  • Arzamazcev B.N. [et al.]. Nauchnye osnovy materialovedenija [Scientific bases of materials science]. Moscow, MGTU im. N.Je. Baumana, 1994. 366 p.
  • Anosov V.Ja., Ozerova M.I., Fialkov Ju.Ja. Osnovy fiziko-himicheskogo analiza [Fundamentals of physical and chemical analysis]. Moscow, Nauka, 1976. 504 p.
  • Kurnakov N.S. Vvedenie v fiziko-himicheskij analiz [Introduction to physical and chemical analysis]. M.L., AN SSSR, 1940. 562 p.
  • Gibbs Dzh.V. Termodinamicheskie raboty [Thermodynamic works]. M.-L.: Gostehteorizdat, 1950. 492 p.
  • Glensdorf P., Prigozhin I. Termodinamicheskaja teorija struktury, ustojchivosti i fluktuacii [Thermodynamic theory of structure, stability and fluctuations]. M., Mir, 1973. 280 p.
  • Pontrjagin L.S. Osnovy kombinatornoj topologii [Basics of combinatorial topology]. Moscow, Nauka, 1986. 118 p.
  • Berzhe P., Pomo I., Vidal K. Porjadok v haose: O deterministicheskom podhode k turbulentnosti [Order in chaos: about the deterministic approach to turbulence]. Moscow, Mir, 1991. 368 p.
  • Ivanova V.S. [et al.]. Sinergetika i fraktaly v materialovedenii [Synergy and fractals in material science]. Moscow, Nauka, 1994. 383 p.
  • Vstovskij G.V. Jelementy informacionnoj fiziki [Elements of information physics]. Moscow, MGIU, 2002. 260 p.
  • Vstovskij G.V., Kolmakov A.G., Bunin I.Zh. Vvedenie v mul'tifraktal'nuju parametrizaciju struktur materialov [Introduction to the multifractal parameterization of material structures]. Izhevsk, Reguljarnaja i haoticheskaja dinamika, 2001. 116 p.
  • Mandelbrot B.B. The fractal geometry of nature. New York, Freeman, 1983.
  • Feder J. Fractals, Plenum. New York, 1988.
  • Shreder M. Fraktaly, haos, stepennye zakony. Miniatjury iz beskonechnogo raja [Fractals, chaos, power laws. Miniatures from endless paradise]. Izhevsk, Reguljarnaja i haoticheskaja dinamika, 2001. 528 p.
  • Morozov A.D. Vvedenie v teoriju fraktalov [Introduction to the fractals theory]. Nizhnij Novgorod, Nizhegorodskij universitet, 1999. 140 p.
  • Kulak M.I. Fraktal'naja mehanika materialov [Fractal mechanics of materials]. Minsk, Belarus. navuka, 2002. 280 p.
  • Chelidze T.L. Metody protekanija v mehanike geomaterialov [Methods of flow in mechanics of geomaterials]. Moscow, Nauka, 1987. 276 p.
  • Vinogradov A.Yu., Agnew S.R. Nanocrystalline Materials: Fatigue. Encyclopedia of Nanotechnology. N.Y., Marcel Dekker, 2004, pp. 2269-2288.