Smart Search 



Title of the article

MODELING OF AXISYMMETRIC ELASTOPLASTIC DEFORMATION OF CYLINDRICAL FIBROUS SHELLS

Authors

YANKOVSKII Andrei P., D. Sc. in Phys. and Math., Leading Researcher of the Laboratory of Fast Processes Physics, Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Science, Novosibirsk, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section DEFORMABLE SOLIDS MECHANICS
Year 2018 Issue 2 Pages 68–76
Type of article RAR Index UDK 539.4 Index BBK  
Abstract

The problem of elastoplastic axisymmetric deformation is formulated for flexible reinforced circular cylindrical shells under dynamic and quasi-static action of internal excessive pressure. The weakened resistance to transverse shear is modeled by the nonclassical Reddy and Reissner theories. The geometric nonlinearity is taken into account in the Karman approximation. The inelastic behavior of phase materials of composition is described by relations of flow theory with isotropic hardening. The explicit finite-difference “cross” scheme is used for the numerical integration of the problem. The dynamic and quasi-static elastoplastic deformation is studied for short, very short and long cylindrical fibrous shells of different relative thickness. The dependences of the maximum deflections on the angles of spiral reinforcement are obtained for such structures. It is shown that depending on the length of the shell and its relative thickness, longitudinal or circumferential reinforcement can be rational by the criterion of the minimum of deflection of the structure. It is demonstrated that the Reissner theory, which does not take into account the curvature of the shell transverse normal, does not always guarantee the satisfactory results of calculations of the dynamic behavior of cylindrical composite shells, especially at the calculated time values of one second or more. It is found that due to the geometric nonlinearity of the problem under consideration, the maximum deflections modulo may occur after a large number of oscillations of the reinforced structure, rather than in the vicinity of the initial moment of time when the shell is subjected to intense short-term dynamic loading.

Keywords

cylindrical shell, reinforcement, geometric nonlinearity, Reddy theory, elastic-plastic deformation, Reissner theory, explosive loads, numerical “cross” scheme

  You can access full text version of the article.
Bibliography
  • Mouritz A.P., Gellert E., Burchill P., Challis K. Review of advanced composite structures for naval ships and submarines. Composite Structures, 2001, vol. 53, no. 1, pp. 21–42.
  • Gibson R.F. Principles of composite material mechanics. Boca Raton, CRC Press, Taylor & Francis Group, 2012.
  • Gill S.K., Gupta M., Satsangi P. Prediction of cutting forces in machining of unidirectional glass-fiber-reinforced plastic composites. Frontiers of Mechanical Engineering, 2013, vol. 8, no. 2, pp. 187–200.
  • Solomonov Yu.S., Georgievskiy V.P., Nedbay A.Ya., Andryushin V.A. Prikladnye zadachi mekhaniki kompozitnykh tsilindricheskikh obolochek [Applied problems of mechanics of composite cylindrical shells]. Moscow, Fizmatlit Publ., 2014. 408 p.
  • Grigorenko Ya.M. Izotropnye i anizotropnye sloistye obolochki vrashcheniya peremennoy zhestkosti [Isotropic and anisotropic layered shells of rotation of variable rigidity]. Kiev, Naukova Dumka Publ., 1973. 228 p.
  • Ambartsumyan S.A. Obshchaya teoriya anizotropnykh obolochek [The general theory of anisotropic shells]. Moscow, Nauka Publ., 1974. 446 p.
  • Abrosimov N.A., Bazhenov V.G. Nelineynye zadachi dinamiki kompozitnykh konstruktsiy [Nonlinear problems of dynamics composite designs]. Nizhniy Novgorod, Izd-vo NNGU Publ., 2002. 400 p.
  • Reddy J.N. Mechanics of laminated composite plates and shells: Theory and analysis. 2nd ed. Boca Raton, CRC Press, 2004. 855 p.
  • Muc A., Muc-Wierzgoń M. An evolution strategy in structural optimization problems for plates and shells. Composite Structures, 2012, vol. 94, no. 4, pp. 1461–1470.
  • Andreev A.N. Uprugost i termouprugost sloistykh kompozitnykh obolochek. Matematicheskaya model i nekotorye aspekty chislennogo analiza [Elasticity and thermo-elasticity of layered composite shells. Mathematical model and some aspects of the numerical analysis]. Saarbrucken, Palmarium Academic Publishing, 2013. 93 p.
  • Kaledin V.O., Aulchenko S.M., Mitkevich A.B., Reshetnikova E.V., Sedova E.A., Shpakova Yu.V. Modelirovanie statiki i dinamiki obolochechnykh konstruktsiy iz kompozitsionnykh materialov [Modeling of a static’s and dynamics of shelled designs from composite materials]. Moscow, Fizmatlit Publ., 2014. 196 p.
  • Bosyakov S.M., Zhivey W. Analiz svobodnykh kolebaniy tsilindricheskoy obolochki iz stekloplastika pri granichnykh usloviyakh Nave [Free vibration analysis of cylindrical shell from fiberglass with Navier boundary conditions]. Mekhanika mashin, mekhanizmov i materialov [Mechanics of machines, mechanisms and materials], 2011, no. 3(16), pp. 24–27.
  • Starovoytov E.I., Leonenko D.V., Pleskachevskiy Yu.M. Kolebaniya trekhsloynykh tsilindricheskikh obolochek v uprugoy srede Vinklera pri rezonanse [Vibrations of the threelayered cylindrical shells in the elastic Winkler’s medium at resonance]. Mekhanika mashin, mekhanizmov i materialov [Mechanics of machines, mechanisms and materials], 2013, no. 4(25), pp. 70–73.
  • Ghulghazaryan G.R., Ghulghazaryan R.G. O svobodnykh interfeisnykh kolebaniyakh tonkikh uprugikh krugovykh tsilindricheskikh obolochek [About free interfacial vibrations of thin elastic circular cylindrical shells]. Mekhanika mashin,
    mekhanizmov i materialov
    [Mechanics of machines, mechanisms and materials], 2013, no. 4(25), pp. 12–19.
  • Gulgazaryan G.R., Gulgazaryan R.G., Mikhasev G.I. O svobodnykh interfeisnykh i kraevykh kolebaniyakh tonkikh uprugikh polubeskonechnykh krugovykh tsilindricheskikh obolochek so svobodnym tortsom [About free boundary and interfacial vibrations of thin elastic semi-infinite circular cylindrical shells]. Mekhanika mashin, mekhanizmov i materialov [Mechanics of machines, mechanisms and materials], 2016, no. 2(35), pp. 34–46.
  • Agalarova I.U. Kolebaniya podkreplennykh perekrestnymi sistemami reber anizotropnykh tsilindricheskikh obolochek s zapolnitelem pri osevom szhatii i s uchetom treniya [Oscillations of anisotropic cylindrical shells with filler supported with cross ribs system under axial compression and giver friction]. Mekhanika mashin, mekhanizmov i materialov [Mechanics of machines, mechanisms and materials], 2017, no. 1(38), pp. 57–63.
  • Kompozitsionnye materialy. Spravochnik [Composite materials. Reference Book]. Kiev, Naukova dumka Publ., 1985. 592 p.
  • Lubin G. Handbook of composites. New York, Van Nostrand Reinhold, 1982. 786 p.
  • Maćko W., Kowalewski Z.L. Mechanical properties of A359/SiCp metal matrix composites at wide range of strain rates. Applied Mechanics and Materials, 2011, vol. 82, pp. 166–171.
  • Yankovskii A.P. Uprugoplasticheskoe deformirovanie izgibaemykh armirovannykh plastin pri oslablennom soprotivlenii poperechnomu sdvigu [Elastoplastic deformation of flexible reinforced plates with reduced shear strength]. Prikladnaya
    matematika i mekhanika
    [Applied Mathematics and Mechanics], 2013, vol. 77, no. 6, pp. 613–628.
  • Yankovskii A.P. Primenenie yavnogo po vremeni metoda tsentralnykh raznostey dlya chislennogo modelirovaniya dinamicheskogo povedeniya uprugoplasticheskikh gibkikh armirovannykh plastin [Applying the Explicit Time Central Difference Method for Numerical Simulation of the Dynamic Behavior of Elastoplastic Flexible Reinforced Plates]. Vycheslitelnaya mekhanika sploshnykh sred [Computational Continuum Mechanics], 2017, vol. 58, no. 7, pp. 1223–1241.
  • Yankovskii A.P. Modelirovanie dinamicheskogo uprugoplasticheskogo povedeniya balok neregulyarnoy sloisto-voloknistoy struktury [Modeling of dynamic elastic-plastic behavior of beams of irregular layered-fibrous structures]. Mekhanika mashin, mekhanizmov i materialov [Mechanics of machines, mechanisms and materials], 2017, no. 1(38), pp. 45–56.
  • Houlston R., DesRochers C.G. Nonlinear structural response of ship panels subjected to air blast loading. Computers and Structures, 1987, vol. 26, no. 1–2, pp. 1–15.
  • Kazanci Z. Dynamic response of composite sandwich plates subjected to time-dependent pressure pulses. International Journal of Non-Linear Mechanics, 2011, vol. 46, pp. 807–817.