Smart Search 



Title of the article MODELING OF BENDING NON-ISOTHERMAL VISCOELASTICVISCOPLASTIC DYNAMIC DEFORMATION OF SHALLOW REINFORCED SHELLS. PART 1. PROBLEM FORMULATION AND SOLUTION METHOD
Authors

YANKOVSKII Andrei P., D. Sc. in Phys. and Math., Leading Research Scientist of the Laboratory of Fast Processes Physics, Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section MECHANICS OF DEFORMED SOLIDS
Year 2025
Issue 2(71)
Pages 62–69
Type of article RAR
Index UDK 539.4
DOI https://doi.org/10.46864/1995-0470-2025-2-71-62-69
Abstract The problem of dynamic non-isothermal viscoelastic-viscoplastic deformation of flexible reinforced shallow shells and curved panels is formulated. Wave processes and poor resistance of such structures to transverse shear are modeled in terms of Ambartsumian’s non-classical bending theory. Transverse compression of composite shells is taken into account. The temperature field in the transverse direction is approximated by a high order polynomial. The geometric nonlinearity is taken into account in the Karman approximation. The viscoelastic behavior of the composition components is described by the Maxwell–Boltzmann body model. Inelastic deformation is described by the relations of the theory of plastic flow with isotropic hardening, and the loading functions of phase materials depend not only on the hardening parameter and temperature, but also on the intensity of the strains speed. Structural relationships of thermomechanics of composites are used, taking into account the complex stress-strain state (SSS) in all phase materials of the composition. These structural relationships make it possible to calculate the temperature fields and SSS in shallow shells not only with traditional “flat”-criss-cross, but also with spatial reinforcement structures. The reduced two-dimensional equations of the thermophysical component of the problem are written out, corresponding to the polynomial expansion of the temperature in the transverse direction of a thin-walled composite structure. In this case, the thermal boundary conditions of the general type on the front surfaces of the shallow shell and the thermal sensitivity of the materials of the components of its composition are taken into account. An explicit numerical scheme is used to integrate the formulated nonlinear coupled problem. The mechanical component of the dynamic problem is integrated using a “cross” type scheme on a three-point template in time; the thermal-physical component is integrated using an explicit scheme on a two-point template in time. A necessary condition for the stability of the numerical scheme is the Courant limitation on the time step.
Keywords shallow shells, curved panels, reinforcement, coupled thermomechanical problem, viscoelasticviscoplasticity, inelastic dynamics, Ambartsumian’s bending theory, residual state, numerical solution, explicit time stepping scheme
  You can access full text version of the article.
Bibliography
  1. Ambartsumian S.A. Obshchaya teoriya anizotropnykh obolochek [General theory of anisotropic shells]. Moscow, Nauka Publ., 1974. 448 p. (in Russ.).
  2. Vishnyakov L.R., et al. Kompozitsionnye materialy [Composite materials]. Kiev, Nauchnaya mysl Publ., 1985. 592 p. (in Russ.).
  3. Tarnopolskiy Yu.M., Zhigun I.G., Polyakov V.A. Prostranstvenno-armirovannye kompozitsionnye materially [Spatially reinforced composite materials]. Moscow, Mashinostroenie Publ., 1987. 224 p. (in Russ.).
  4. Bogdanovich A.E. Nelineynye zadachi dinamiki tsilindricheskikh kompozitnykh obolochek [Nonlinear problems of the dynamics of cylindrical composite shells]. Riga, Zinatne Publ., 1987. 295 p. (in Russ.).
  5. Handbook of composites. New York, Van Nostrand Reinhold Company Inc., 1982. 786 p.
  6. Abrosimov N.A., Bazhenov V.G. Nelineynye zadachi dinamiki kompozitnykh konstruktsiy [Nonlinear problems of dynamics composites designs]. Nizhny Novgorod, Nizhegorodskiy gosudarstvennyy universitet im. N.I. Lobachevskogo Publ., 2002. 399 p. (in Russ.).
  7. Qatu M.S, Sullivan R.W., Wang W. Recent research advances on the dynamic analysis of composite shells: 2000–2009. Composite structures, 2010, vol. 93, iss. 1, pp. 14–31. DOI: https:// doi.org/10.1016/j.compstruct.2010.05.014.
  8. Kazanci Z. Dynamic response of composite sandwich plates subjected to time-dependent pressure pulses. International journal of non-linear mechanics, 2011, vol. 46, iss. 5, pp. 807–817. DOI: https://doi.org/10.1016/j.ijnonlinmec.2011.03.011.
  9. Vasiliev V.V., Morozov E.V. Advanced mechanics of composite materials and structural elements. Amsterdam, Elsevier, 2013. 832 p. DOI: https://doi.org/10.1016/C2011-0-07135-1.
  10. Solomonov Yu.S., Georgievskiy V.P., Nedbai A.Ya., Andryushin V.A. Prikladnye zadachi mekhaniki kompozitnykh tsilindricheskikh obolochek [Applied problems of mechanics of composite cylindrical shells]. Moscow, Fizmatlit Publ., 2014. 408 p. (in Russ.).
  11. Gibson R.F. Principles of composite material mechanics. Boca Raton, CRC Press, 2016. 700 p. DOI: https://doi.org/10.1201/b19626.
  12. Kulikov G.M. Termouprugost gibkikh mnogosloynykh anizotropnykh obolochek [Thermo-elasticity flexible multilayered anisotropic shells]. Izvestiya Akademii nauk. Mekhanika tverdogo tela, 1994, no. 2, pp. 33–42 (in Russ.).
  13. Reddy J.N. Mechanics of laminated composite plates and shells: Theory and analysis. Boca Raton, CRC Press, 2003. 858 p. DOI: https://doi.org/10.1201/b12409.
  14. Dimitrienko Yu.I. Mekhanika kompozitnykh konstruktsiy pri vysokikh temperaturakh [Mechanics of composite structures at high temperatures]. Moscow, Fizmatlit Publ., 2018. 447 p.
    (in Russ.).
  15. Ramu S.A., Iyengar K.J. Plastic response of orthotropic spherical shells under blast loading. Nuclear engineering and design, 1979, vol. 55, iss. 3, pp. 363–373. DOI: https://doi.org/10.1016/0029-5493(79)90115-8.
  16. Vena P., Gastaldi D., Contro R. Determination of the effective elastic-plastic response of metal-ceramic composites. International journal of plasticity, 2008, vol. 24, iss. 3, pp. 483–508. DOI: https://doi.org/10.1016/j.ijplas.2007.07.001.
  17. Leu S.-Y., Hsu H.-C. Exact solutions for plastic responses of orthotropic strain-hardening rotating hollow cylinders. International journal of mechanical sciences, 2010, vol. 52, iss. 12, pp. 1579–1587. DOI: https://doi.org/10.1016/j.ijmecsci.2010.07.006.
  18. Brassart L., Stainier L., Doghri I., Delannay L. Homogenization of elasto-(visco) plastic composites based on an incremental variational principle. International journal of plasticity, 2012, vol. 36, pp. 86–112. DOI: https://doi.org/10.1016/j.ijplas.2012.03.010.
  19. Morinière F.D., Alderliesten R.C., Benedictus R. Modelling of impact damage and dynamics in fibre-metal laminates – A review. International journal of impact engineering, 2014, vol. 67, pp. 27–38. DOI: https://doi.org/10.1016/j.ijimpeng.2014.01.004.
  20. Akhundov V.M. Inkrementalnaya karkasnaya teoriya sred voloknistogo stroeniya pri bolshikh uprugikh i plasticheskikh deformatsiyakh [Incremental carcass theory of fibrous media under large elastic and plastic deformations]. Mekhanika kompozitnykh materialov, 2015, vol. 51, no. 3, pp. 539–558 (in Russ.).
  21. Sekkate Z., Aboutajeddine A., Seddouki A. Elastoplastic meanfield homogenization: recent advances review. Mechanics of advanced materials and structures, 2020, vol. 29, iss. 3, pp. 449–474. DOI: https://doi.org/10.1080/15376494.2020.1776431.
  22. He G., Liu Y., Lacy T.E., Horstemeyer M.F. A historical review of the traditional methods and the internal state variable theory for modeling composite materials. Mechanics of advanced materials and structures, 2022, vol. 29, iss. 18, pp. 2617–2638. DOI: https://doi.org/10.1080/15376494.2021.1872124.
  23. Yankovskii A.P. Modelirovanie vyazkouprugoplasticheskogo povedeniya pologikh obolochek s uchetom skorosti deformirovaniya materiala [Simulation of viscoelastic-plastic behavior of shallow shells with account for strain rate of materials]. Prikladnaya mekhanika i tekhnicheskaya fizika, 2022, vol. 63, no. 2(372), pp. 140–150. DOI: http://dx.doi.org/10.15372/PMTF20220213 (in Russ.).
  24. Yankovskii A.P. Modelirovanie neizotermicheskogo vyazkouprugo-vyazkoplasticheskogo deformirovaniya izgibaemykh armirovannykh plastin [Modeling of non-isothermal viscoelasticviscoplastic deformation of bending reinforced plates]. Izvestiya RAN. Mekhanika tverdogo tela, 2023, no. 5, pp. 147–169. DOI: https://doi.org/10.31857/S0572329923700071 (in Russ.).
  25. Romanova T.P. Rigid-plastic behavior and bearing capacity of thin flat reinforced rotating disks. Mechanics of advanced materials and structures, 2024, vol. 31, iss. 30, pp. 12721–12739. DOI: https://doi.org/10.1080/15376494.2024.2328751.
  26. Yankovskii A.P. Modelirovanie neizotermicheskogo vyazkouprugoplasticheskogo deformirovaniya gibkikh pologikh armirovannykh obolochek pri dinamicheskom nagruzhenii [Modeling of nonisothermal viscoelastic-plastic deformation of flexible shallow reinforced shells under dynamic loading]. Composite materials constructions, 2024, iss. 1(173), pp. 11–21 (in Russ.).
  27. Bezukhov N.I., Bazhanov V.L., Goldenblat I.I., Nikolaenko N.A., Sinyukov A.M. Raschety na prochnost, ustoychivost i kolebaniya v usloviyakh vysokikh temperatur [Calculations on strength, stability and fluctuations in conditions of high temperatures]. Moscow, Mashinostroenie Publ., 1965. 566 p. (in Russ.).
  28. Reissner E. On transverse vibrations of thin shallow elastic shells. Quarterly of applied mathematics, 1955, vol. 13, no. 2, pp. 169–176. DOI: https://doi.org/10.1090/qam/69715.
  29. Yankovskii A.P. Modelirovanie protsessov teploprovodnosti v prostranstvenno-armirovannykh kompozitakh s proizvolnoy orientatsiey volokon [Modelling of processes of thermal conductivity in spatially reinforced composites with any orientation of fibres]. Prikladnaya fizika, 2011, no. 3, pp. 32–38 (in Russ.).