Smart Search 



Title of the article NUMERICAL ANALYSIS OF DYNAMIC PROCESSES IN MULTISPEED PLANETARY TRANSMISSIONS WITH SPLITTING AND CIRCULATING POWER FLOWS
Authors

KULIKOV Ilya A., Ph. D. in Eng., Leading Research Engineer, FSUE NAMI, Moscow, Russian Federation, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

FISENKO Igor A., Ph. D. in Eng., Leading Expert of the Expert Council, FSUE NAMI, Moscow, Russian Federation, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

GIRUZKY Olgert I., D. Sc. in Eng., Prof., FSUE NAMI, Moscow, Russian Federation

In the section DYNAMICS, DURABILITY OF VEHICLES AND STRUCTURES
Year 2025
Issue 4(73)
Pages 58–65
Type of article RAR
Index UDK 629.3
DOI https://doi.org/10.46864/1995-0470-2025-4-73-58-65
Abstract The article proposes an approach to synthesize mathematical models of multispeed planetary transmissions intended for numerical analysis of their dynamic characteristics under operating conditions that feature splitting and circulation of power flows (including gear shifting processes). The approach makes use of elements with spring-damper properties to model both epicyclic gear sets and friction clutches. The resulting system of ordinary differential equations has invariant structure and provides adequate calculation of the torques exerted in the elements of the epicyclic gears and the friction clutches across the entire operating range of the transmission. To verify the modeling approach, numerical experiments were conducted simulating operation of a production planetary transmission. The simulation results are presented showing transient operating modes with the friction clutches slipping and the power flows splitting and circulating.
Keywords multispeed planetary transmissions, mathematical modeling, transient modes, power circulation, power splitting, gear shifting, friction clutches
  You can access full text version of the article.
Bibliography
  1. Suzuki T., et al. New RWD 10 speed automatic transmission for passenger vehicles. SAE international journal of engines, 2017, vol. 10, iss. 2, pp. 695–700. DOI: https://doi.org/10.4271/2017-01-1097.
  2. Krasnevskiy L.G., Poddubko S.N. Pretsizionnoe upravlenie avtomaticheskimi transmissiyami: itogi 50 let razvitiya [Precision control of automatic transmissions: the summary of 50 years development]. Mechanics of machines, mechanisms and materials, 2015, no. 4(33), pp. 5–13 (in Russ.).
  3. Xu X., Dong P., Liu Y., Zhang H. Progress in automotive transmission technology. Automotive innovation, 2018, vol. 1, iss. 3, pp. 187–210. DOI: https://doi.org/10.1007/s42154-018-0031-y.
  4. Tarasik V.P., Puzanova O.V. Mnogoprogrammnye sistemy upravleniya GMP [Multi-program control systems for hydromechanical transmissions]. Avtomobilnaya promyshlennost, 2004, no. 1, pp. 16–20 (in Russ.).
  5. Basalaev V.N., Kovalenko A.V. Issledovanie protsessa pereklyucheniya peredach pod nagruzkoy i optimizatsiya upravleniya friktsionnymi muftami mekhanicheskoy transmissii [Investigation of the gearshift process under load and optimization controlling the friction clutches of mechanical transmission]. Mechanics of machines, mechanisms and materials, 2011, no 2(15), pp. 24–32 (in Russ.).
  6. Kim S., Oh J., Choi S. Gear shift control of a dual-clutch transmission using optimal control allocation. Mechanism and machine theory, 2017, vol. 113, pp. 109–125. DOI: https://doi.org/10.1016/j.mechmachtheory.2017.02.013.
  7. Kulikov I.A., Giruzky O.I., Fisenko I.A. Vliyanie upravleniya krutyashchim momentom na vedushchem valu avtomaticheskoy stupenchatoy transmissii na protsessy pereklyucheniya peredach [Effect of input shaft torque control during gear shifting processes in automatic stepped transmissions]. Trudy NAMI, 2022, no. 4(291), pp. 70–82. DOI: https://doi.org/10.51187/0135-3152-2022-4-70-82 (in Russ.).
  8. Tarasik V.P. Modelirovanie planetarnoy korobki peredach [Planetary gearbox simulation]. Vestnik Belorussko-Rossiyskogo universiteta, 2018, no. 3(60), pp. 36–48. DOI: https://doi.org/10.53078/20778481_2018_3_36 (in Russ.).
  9. Algin V.B. Dinamika mnogomassovykh sistem mashin pri izmenenii sostoyaniy friktsionnykh komponentov i napravleniy silovykh potokov [Dynamics of multibody systems of machines under changing states of frictional components and directions of power flows]. Mechanics of machines, mechanisms and materials, 2014, no. 4(29), pp. 21–32 (in Russ.).
  10. Crowther A., Zhang N., Liu D.K., Jeyakumaran J.K. Analysis and simulation of clutch engagement judder and stick-slip in automotive powertrain systems. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of automobile engineering, 2004, no. 218, iss. 12, pp. 1427–1446. DOI: https://doi.org/10.1243/0954407042707731.
  11. Deur J., Asgari J., Hrovat D. Modeling and analysis of automatic transmission engagement dynamics-nonlinear case including validation. Journal of dynamic systems measurement and control, 2006, no. 128, iss. 2, pp. 251–262. DOI: https://doi.org/10.1115/1.2192826.
  12. Ivanovic V., Tseng H.E. Bond graph based approach for modeling of automatic transmission dynamics. SAE international journal of engines, 2017, vol. 10, iss. 4, pp. 1999–2014. DOI: https://doi.org/10.4271/2017-01-1143.
  13. Deur J., Asgari J., Hrovat D. Modeling of an automotive planetary gear set based on Karnopp model for clutch friction. Proc. ASME 2003 international mechanical engineering congress and exposition “Dynamic systems and control”, 2003, vol. 1–2, pp. 903–910. DOI: https://doi.org/10.1115/IMECE2003-41693.
  14. Kurochkin F.F. Metod vybora ratsionalnykh kharakteristik protsessa pereklyucheniya v avtomaticheskoy korobke peredach avtomobilya. Diss. kand. tekhn. nauk [A method of finding efficient characteristics of shifting processes in automatic gearbox of automotive vehicle. Ph. D. Thesis]. Moscow, 2008. Pp. 33–37 (in Russ.).
  15. Li B., et al. Coordinated control of gear shifting process with multiple clutches for power-shift transmission. Mechanism and machine theory, 2019, vol. 140, pp. 274–291. DOI: https://doi.org/10.1016/j.mechmachtheory.2019.06.009.
  16. Sharipov V.M. Konstruirovanie i raschet traktorov [Design and calculation of tractors]. Moscow, Mashinostroenie Publ., 2004. Pp. 246–247 (in Russ.).
  17. Marques F., Flores P., Pimenta Claro J.C., Lankarani H.M. A survey and comparison of several friction force models for dynamic analysis of multibody mechanical systems. Nonlinear dynamics, 2016, vol. 86, iss. 3, pp. 1407–1443. DOI: https://doi.org/10.1007/s11071-016-2999-3.
  18. Åström K.J., Canudas-de-Wit C. Revisiting the LuGre friction model. IEEE control systems magazine, 2008, vol. 28, iss, 6, pp. 101–114. DOI: https://doi.org/10.1109/MCS.2008.929425.
  19. Nagaitcev M.V., Nagaitcev M.M., Taratorkin A.I., Kharitonov S.A. Gidromekhanicheskaya korobka peredach [Hydromechanical gearbox]. Patent WO, no. WO/2015/009185, 2015 (in Russ.).
  20. Genta G. Motor vehicle dynamics. Modeling and simulation. Singapore, World Scientific Publishing Ltd, 2006. 539 p.