Authors |
Mikhasev G.I., Doctor of Physical and Mathematical Sciences, Professor, Head of the Bio- and Nanomechanics Department, Belarusian State University, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it. Sheiko A.N., Master's student, Bio- and Nanomechanics Department, Belarusian State University, Minsk, Republic of Belarus
|
Bibliography |
- Xu M. Free transverse vibrations of nano-to-micron scale beams. Proc. R. Soc. Lond. A., 2006, vol. 462, pр. 2977-2995.
- Peddieson J., Buchanan R., McNitt R.P. Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci., 2003, vol. 41, pр. 305-312.
- Harik V.M. Ranges of Applicability for the Continuum Beam Model in the Mechanics of Carbon Nanotubes and Nanorows. Solid State Commum., 2001, vol. 120, pp. 331-335.
- Sun C.T., Zhang H. Size-dependent elastic moduli of platelike nanomaterials. J. Appl. Phys, 2003, vol. 93, pp. 1212-1218.
- Eringen A.C. Nonlocal continuum field theories. New-York, Springer, 2002.
- Chang T., Geng J., Guo X. Prediction of chirality- and size-dependent elastic properties of single-walled carbon nanotubes via a molecular mechanics model. Proc. R. Soc. A., 2006, vol. 462, pp. 2523-2540.
- Wang L. [et al.]. Size dependence of the thin-shell model for carbon nanotubes. Physical Review Letters, 2005, vol. 95, pp. 105501-105504.
- Ru C.Q. Chirality-dependent mechanical behavior of carbon nanotubes based on an anisitropic elastic shell model. Math. Mech. Solids, 2009, vol. 14, pp. 88-101.
- Fazelzadeh S.A., Ghavanloo E. Nonlocal anisotropic elastic sshell model for vibrations of single-walled carbon nanotubes with arbitrary chirality. Composite Structures, 2012, vol. 94(3), pp. 1016-1022.
- Peng J. [et al.]. Can a single-wall carbon nanotube be modeled as a thin shell. Journal of the Mechanics and Physics of Solids, 2008, vol. 56, pp. 2213-2224.
- Mikhasev G.I. Uravnenija dvizhenija mnogostennoj uglerodnoj nanotrubki, osnovannye na nelokal'noj teorii ortotropnyh obolochek [The equations of motion of multi-walled carbon nanotubes based on nonlocal theory of orthotropic shells]. Dokl. NAN Belarusi [NAS of Belarus report], 2011, vol. 55, no. 6, pp. 119-123.
- Mikhasev G. On localized modes of free vibrations of singlewalled carbon nanotubes embedded in nonhomogeneous elastic medium. Z. Angew. Math. Mech., 2013. DOI 10.1002/zamm.201200140.
- Hernandez E. [et al.]. Elastic properties of C and BxCyNz composite nanotubes. Phys. Rev. Lett., 1998, vol. 80, pp. 4502-4505.
- Popov V.N., Van Doren V.E., Balkanski M. Elastic properties of single-walled carbon nanotubes. Phys. Rev. B61, 2000, pp. 3078-3084.
- Chang T. A molecular based anisotropic shell model for single-walled carbon nanotubes. J. Mech. Phys. Solids, 2010, vol. 58, pp. 1422-1433.
- Flugge W. Stattik und Dynamik der Schalen. Berlin, Springer. 1934.
- Usuki T., Yogo K. Beam equations for multi-walled carbon nanotubes derived from Flugge shell theory. Proc. R. Soc. A., 2009, vol. 465, pp. 1199-1226.
- Ambarcumjan S.A. Obshhaja teorija anizotropnyh obolochek [General theory of anisotropic shells]. Moscow, Nauka. 1974. 448 p.
- Mikhasev G.I., Tovstik P.E. Lokalizovannye kolebanija i volny v tonkih obolochkah [Local oscillations and waves in thin shells]. Asimptoticheskie metody [Asymptotic methods]. Moscow, FIZMATLIT, 2009. 292 p.
|