Title of the article

SURFACE MODIFICATION OF THERMAL SPRAYING STAINLESS STEEL COATINGS BY CLADDING DEFORMATION

Authors

BELOTSERKOVSKIY Мarat A., Dr. Techn. Sc., Associate Professor, Head of Laboratory of Gas-Thermal Methods of Hardening of Machine Parts, Joint Institute of Mechanical Engineering of the National Academy of Sciences of Belarus, Minsk, The Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

LEVANTSEVICH Mikhail A., Cand. Techn. Sc., Associate Professor, Leading Researcher, Joint Institute of Mechanical Engineering of the National Academy of Sciences of Belarus, Minsk, The Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

KONOVALOVA Еlena F., Assistant, Belarusian National Technical University, Minsk, The Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section TECHNOLOGICAL MECHANICS
Year 2016 Issue 1 Pages 64-67
Type of article RAR Index UDK 621.793 Index BBK  
Abstract

The article shows the possibility of using the method of cladding deformation to increase the density and corrosion resistance of the surface layers of thermal spray coatings. The effect of the hardening treatment of thermal coatings of 40H13 steel strain by plating flexible tool austenitic 10H18N10T steel was investigated. It has been found that this treatment provides improved corrosion resistance in an environment of 10 % NaCl aqueous by 13...15 %.

Keywords

gas-thermal spraying coatings, cladding deformation, flexible tool, porosity

  You can access full text version of the article.
Bibliography
  • Sharov V.M. Metallizacionnye pokrytija [Metallized coating]. Kiev, Builder, 1981. 80 p.
  • Gol’nik V.F., Ipatova Z.G. Vlijanie propitki na korrozionnuju stojkost’ gazotermicheskih pokrytij [The influence of impregnation on corrosion resistance of gas-thermal coatings]. Novye processy i oborudovanie dlja gazoter-micheskih i vakuumnyh pokrytij [New processes and equipment for thermal and vacuum coatings]. Kiev, Scientific thought, 1990, pp. 78–82.
  • Vityaz P.A., Belotserkovsky M.A., Kamko A.I., Prjadko A.S. Zamena gal’vanicheskogo hromirovanija na tehnologiju giperzvukovoj metallizacii pri remonte detalej uzlov trenija skol’zhenija [Replace galvanic chromium plating technology
    hypersonic metallization in the repair of parts of friction assemblies of sliding]. Remont, vosstanovlenie, modernizacija [Repair, restoration, modernization], 2010, no.10, pp. 2–5.
  • Vityaz P.A., Il’jushhenko A.F., Shevcov A.I. Osnovy nanesenija iznosostojkih, korrozionnostojkih i teplozashhitnyh pokrytij [The basics of applying a wear-resistant, corrosion-resistant and thermal barrier coatings]. Minsk, Belarusian science, 2006. 311 p.
  • Levancevich M.A., Maksimchenko N.N., Zol’nikov V.G. Povyshenie jeksplua-tacionnyh svojstv tribosoprjazhenij naneseniem pokrytij metallicheskimi shhetkami [Increase of operational properties of friction units application in indoor metal
    brushes]. Vesci Nac. akad. navuk Belarusi. Ser. fiz.-tjehn. Navuk [News of the Nat. Acad. of Sciences of Belarus. Ser. physics-technical. sciences], 2005, no. 1, pp. 67–72.
  • Vityaz P.A., Zhornik V.I., Belotserkovsky M.A., Levancevich M.A. Povyshenie resursa tribosoprjazhenij aktivirovannymi metodami inzhenerii poverhnosti [Increased resource of friction units activated methods of surface engineering]. Minsk, Belarusian science, 2012. 452 p.

Title of the article

MECHANISM OF PLASTIC DEFORMATION LOCALIZATION IN POLYCRYSTALLINE PRECIPITATION-HARDENING ALLOYS

Authors

KUKAREKO Vladimir A., Dr. Phys.-Math. Sc., Associate Professor, Head of the Center of Structural Research and Tribo-Mechanical Test of Materials and Machine-Building Output, Joint Institute of Mechanical Engineering of the National Academy of Sciences of Belarus, Minsk, The Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section TECHNOLOGICAL MECHANICS
Year 2016 Issue 1 Pages 58-63
Type of article RAR Index UDK 669.1'26:539.37.004.9 Index BBK  
Abstract

The mechanism of strain localization of polycrystallic precipitation hardening materials based on the account of statistical dissipation in allocation of particles on slip planes and dissipation of the size of particles is proposed. The methods of computer simulation have shown that the decrease of the grain size of precipitation hardening alloy and the decrease of particles amount, contained in a grain and also the formation of particles polydisperse mixture at thecoagulative growth stage during aging, intensify the dissipation in allocation of particles on a matrix.

Keywords

magnetic abrasive treatment, magnetic abrasive composites, mechanical activation, mechanosynthesis, microstructure, mechanocomposites, planetary ball mill

  You can access full text version of the article.
Bibliography
  • Phillips V. Hardening Mechanisms in a Precipitation Hardenable Nickel-12,7 at. % Aluminium Alloys. Phil. Mag., 1967, vol. 16, no. 139, pp. 103–117.
  • Travina N.T. O nekotoryh zakonomernostjah deformacii i uprochnenija monokristallov starejushhih splavov [Some regularities of deformation and hardening of single crystals of aging alloys]. MiTOM [Metallurgy and heat treatment], 1977,
    no. 2, pp. 16–20.
  • Gitgarc M.I., Kukareko V.A. Vlijanie razmera zerna na processy razuprochnenija dispersionno-tverdejushhih splavov na pozdnih stadijah starenija [Effect of grain size on the process of softening of precipitation hardening alloys in the later stages of aging]. Doklady AN SSSR [Reports of the USSR Academy of Sciences], 1988, vol. 301, no. 2, pp. 336–340.
  • Gitgarc M.I., Kukareko V.A. O statisticheskoj prirode razuprochnenija dispersionno-tverdejushhih splavov pri dlitel'nom izotermicheskom starenii [On the statistical nature of the softening of precipitation hardening alloys during prolonged isothermal aging]. Fizika metallov i metallovedenie [The Physics of Metals and Metallography], 1989, vol. 68, no. 3, pp. 582–589.
  • Kukareko V.A. Submikroskopicheskaja struktura i ee rol’ v formirovanii fiziko-mehanicheskih svojstv dispersionno-uprochnennyh materialov na nikelevoj i zheleznoj osnovah: Avt. diss. dokt. fiz.-mat. nauk [Submicroscopic structure and its role in the physical and mechanical properties of dispersion-strengthened materials on nickel and iron bottoms: Abs. Dr. phys. and math. sci. diss.]. Tomsk, 2004. 36 p.
  • Kukareko V.A. Statisticheskaja model’ lokalizacii deformacii i razuprochnenija polikristallicheskih dispersionno-tverdejushhih splavov. Vychislitel’noe modelirovanie [Statistical model of localization of deformation and softening of polycrystalline precipitation hardening alloys. Computational modeling]. Fizika metallov i metallovedenie [The Physics of Metals and Metallography], 2006, vol. 102, no. 3, pp. 355–362.
  • Wagner C. Theorie der Alterung von Niederschlagen durch Umleen (Ostwald–Reifung). Z. Electrochem, 1961, vol. 6, no. 3, pp. 581–591.
  • Gitgarc M.I., Kukareko V.A. Rol’ submikroskopicheskoj struktury v soprotivlenii mikroplasticheskoj deformacii dispersionno-tverdejushhih splavov na nikel’-hromovoj osnove. 1. Stadija uprochnenija, 2. Stadija razuprochnenija [The role of the submicroscopic structure in resisting ojf microplastic deformation precipitation hardening alloys nikel-chromium basis. 1. The stage of hardening 2. The Stage of softening]. Fizika metallov i metallovedenie [The Physics of Metals and Metallography], 1985, vol. 60, no. 4, pp. 798–815.
  • Himushin F.F. Zharoprochnye stali i splavy [Heat-resistant steels and alloys]. Moscow, Metallurgija, 1969. 750 p.
  • Sims Ch., Hagel’ V. Zharoprochnye splavy [The Superalloys]. Moscow, Metallurgija, 1976. 567 p.
  • Novokshenov V.Ju., Hannanov Sh.H. Dislokacionnaja model’ i kinetika vysokotemperaturnogo zernogranichnogo proskal'zyvanija [Dislocation model and kinetics of high-temperature grain boundary sliding]. Fizika metallov i metallovedenie [The Physics of Metals and Metallography], 1984, vol. 57, no. 5, pp. 1015–1020.

Title of the article

COMPUTER SIMULATION OF THE COMPOSITES STRUCTURE AND PROPERTIES IN LOADED CONSTRUCTIONS

Authors

PLESKACHEVSKII Yuri M., Corresponding Member of the NAS of Belarus, Dr. Techn. Sc., Professor, Advisor of the NAS of Belarus, V.A. Belyi Metal-Polymer Research Institute, Gomel, The Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

SHIMANOVSKY Alexandr O., Dr. Techn. Sc., Associate Professor, Head of Department of Technical Physics and Engineering Mechanics, Belarusian State University of Transport, Gomel, The Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section ENGINEERING COMPONENTS
Year 2016 Issue 1 Pages 41-51
Type of article RAR Index UDK 534.1 Index BBK  
Abstract

The article considers approaches to solutions to the problem concerning composite structure deformations using finite element method. The examples of composite simulations based on the material unit cells and real microstructures are shown. The results of simulations have been obtained for the concrete and reinforced concrete structural elements considering internal contact interactions between the composite matrix and the reinforcing phase.

Keywords

computer simulation, composite materials, material unit cell, microstructure, contact interaction

  You can access full text version of the article.
Bibliography
  • Brebbia C.A., Telles J.C.F., Wrobel L.C. Boundary Element Techniques. Theory and Applications in Engineering. Berlin, Springer-Verlag, 1984, 464 p. [Russ. ed.: Brebbia C., Telles J., Wrobel L. Metody granichnyh jelementov. Moscow, Mir Publ., 1987. 524 p.]
  • Bohm H.J., Rammerstorfer F.G., Weisenbek E. Some simple models for micromechanical investigations of fiber arrangement effects in MMCs. Computational Materials Science, 1993, vol. 1, no. 3, pp. 177–194.
  • Basov K.A. ANSYS: Spravochnik pol’zovatelja [ANSYS: User’s Handbook]. Moscow, DMK Press, 2014. 639 p.
  • Brockenborough J. R., Suresh S., Wienecke H. A. Deformation of metal-matrix composites with continuous fibers: geometrical effects of fiber distribution and shape. Acta Metallurgica et Materialia, 1991, vol. 39, no. 5, pp. 735–752.
  • Dong M., Schmauder S. FE modelling of continuous fiber and particle reinforced composites by self-consistent embedded cell models. Computational Methods in Micromechanics. San Francisco, ASME, 1995, pp. 81–86.
  • Shen Y.-L., Finot M., Needleman A., Suresh S. Effective elastic response of two-phase composites. Acta Metallurgica et Materialia, 1994, vol. 42, no. 1, pp. 77–97.
  • Dong M., Schmauder S. Transverse mechanical behaviour of fiber reinforced composites – FE modelling with embedded cell models. Computational Material Science, 1996, vol. 5, no. 1–3, pp. 53–66.
  • Chernous D.A., Konyok D.A. Uprugoplasticheskoe deformirovanie poristyh materialov (dvumernaja model’) [Elasto-plastic deformation of cellular solid (2D model)]. Materialy, tehnologii, instrumenty [Materials, Technologies, Instruments], 2002, vol. 7, no. 1, pp. 21–24.
  • Shilko S.V., Petrokovets E.M., Pleskachevsky Yu.M. Prediction of auxetic phenomena in nanoporomaterials. Physica Status Solidi, 2008, vol. 245, no. 11, pp. 2445–2453.
  • Kuna M., Zun D.-S. Three-dimensional cell model analyses of void growth in ductile materials. International Journal of Fracture, 1996, vol. 81, no. 3, pp. 235–258.
  • Geni M., Kikuchi M. Damage analysis of aluminum matrix composite considering non-uniform distribution of SiC particles. Acta Materialia, 1998, vol. 46, no. 9, pp. 3125–3133.
  • Jakovenko O.A., Zaval’naja I.V., Nalivajko Ju.N. Primenenie ANSYS dlja analiza dinamicheskih harakteristik kompozicionnyh materialov [Application of ANSYS to analyze the dynamic characteristics of composite materials]. ANSYS Advantage, Russkaja redakcija [ANSYS Advantage, Russian Edition], 2011, no. 15, pp. 63–64.
  • Iung I., Petitgand H., Grange M., Lemaire E. Mechanical behaviour of multiphase materials: Numerical simulations and experimental comparisons. Proceedings of the IUTAM Symposium on Micromechanics of Plasticity and Damage of Multiphase Materials, Dordrecht, Kluwer Academic Publishers, 1996, pp. 99–106.
  • Nahlik L., Hutar P., Duskova M., Dusek K., Masa B. Estimation of the macroscopic stress-strain curve of a particulate composite with a crosslinked polymer matrix. Mechanics of Composite Materials, 2011, vol. 47, no. 6, pp. 627–634. [Russ. ed.: Naglik L., Gutarzh P., Dushkova M., Dushek K., Masha B. Ocenka makroskopicheskoj krivoj deformirovanija kompozita na osnove sshitoj polimernoj matricy s poroshkovym napolnitelem. Mehanika kompozitnyh materialov, 2011, vol. 47, no. 6, pp. 893–902].
  • Garishin O.K., Lebedev S.N. Issledovanie strukturnyh naprjazhenij v dispersno napolnennyh jelastomernyh nanokompozitah [Study of structural stress in the dispersionfilled elastomeric nanocomposites]. Mehanika kompozicionnyh materialov i konstrukcij [Mechanics of composite materials and structures], 2006, vol. 12, no. 3, pp. 289–299.
  • Wulf J., Schmauder S., Fischmeister H. F. Finite element modeling of crack propagation in ductile fracture. Computational Materials Science, 1993, vol. 1, no. 3, pp. 297–301.
  • Lippmann N., Steinkopff Th., Schmauder S., Gumbsch P. 3D-Finite-Element-modelling of microstructures with the method of multiphase elements. Computational Materials Science, 1997, vol. 9, no. 1–2, pp. 28–35.
  • Antretter T., Fischer F.D., Plankensteiner A.F., Rammerstorfer F.G. Multiscale Modeling of Highly Heterogeneous MMCs. ZAMM – Journal of Applied Mathematics and Mechanics, vol. 79, no. S1, pp. 127–130.
  • Shilko S.V., Riabchenko T.V. Mezomehanicheskij analiz asfal’tobetona dlja dorozhnyh pokrytij [Meso-mechanical analysis of bituminous concrete for paving]. Problemy i perspektivy razvitija transportnyh sistem i stroitel’nogo kompleksa [Problems and development prospects of transport systems and the construction industry]. Gomel, BelSUT, 2013, pp. 321–322.
  • Pasovets V.N., Kovtun V.A., Mihovski M., Pleskachevskii Yu.M., Aleksiev A. Ocenka urovnja naprjazhenij, voznikajushhih v zonah kontaktnogo vzaimodejstvija dispersnyh komponentov metallopolimernyh nanostrukturirovannyh sistem pri jelektromehanotermicheskom vozdejstvii [Evaluation of stress levels appearing in contact interaction zones of nanostructured metal-polymer systems dispersed components under electromechanical loading]. Mehanika. Nauchnye issledovanija i uchebno-metodicheskie razrabotki [Mechanics: Scientific Researches and Methodical Development], 2014, vol. 8, pp. 154–163.
  • Carter W.C., Langer S.A., Fuller E.R. Jr. OOF: Finite Element Analysis of Microstructures (2003). Available at: http://www.ctcms.nist.gov/oof/oof1/Manual/Manual.html (accessed 26 June 2015).
  • Moorthy S., Ghosh S. Voronoi cell finite element model for particle cracking in elastic-plastic composite materials. Computer Methods in Applied Mechanics and Engineering, 1998, vol. 151, no. 3–4, pp. 377–400.
  • Ghosh S., Lee K., Moorthy S. Multiple analysis of heterogeneous elastic structures using homogenization theory and Voronoi cell finite element method. International Journal of Solids and Structures, 1995, vol. 32, no. 1, pp. 27–62.
  • Knyazeva E.N., Kukareko V.A., Alexandrov V.Y., Timoshenko N.P. Primenenie metoda konechnyh jelementov pri issledovanii kompozicionnyh materialov: Podhody, metodiki, programmnye sredstva [Application of the finite element method to the investigation of composite materials. Approaches, methods, computer programms]. Mehanika mashin, mehanizmov i materialov [Mechanics of machines, mechanisms and materials], 2013, no. 3(24), pp. 69–76.
  • Steinkopff Th., Sautter M. Simulating the elasto-plastic behavior of multiphase materials by advanced finite element techniques Part I: a rezoning technique and the multiphase element method. Computational Materials Science, 1995, vol. 4, no. 1, pp. 10–14.
  • Saouma V. Lecture Notes in Fracture Mechanics. Boulder, University of Colorado, 1995. 79 p.
  • Jirasek M. Comparative study on finite elements with embedded discontinuities. Computer Methods in Applied Mechanics and Engineering, 2000, vol. 188, no. 1–3, pp. 307–330.
  • Mishnaevsky L., Schmauder S. Continuum mesomechanical finite element modeling in materials development: A state-of-the-art review. Applied Mechanics Reviews, 2001, vol. 54, no. 1, pp. 49–67.
  • Shimanovskiy A.O., Kuziomkina H.M., Yakubovich V.I., Vasiliev A.A. Mnogourovnevoe komp'juternoe modelirovanie stroitel’nyh kompozitov s uchetom vnutrennih kontaktnyh vzaimodejstvij [Multiscale computer modeling of building composites considering the internal contact interactions]. Materialy, tehnologii, instrumenty [Materials, Technologies, Instruments], 2013, vol. 18, no. 4, pp. 17–21.
  • Shimanovskiy A., Kuziomkina H., Pleskachevskiy Yu., Yakubovich V. Finite element modeling of the cement matrix and filler grains interaction. Technolog, 2013, vol. 5, no. 4, pp. 171–174.
  • Shimanovskiy A.O., Yakubovich V.I., Pleskachevskiy Yu.M. Finite Element Modeling of the Composite Reinfoced by Grains. Proceedings of 8th GRACM International Congress on Computational Mechanics, Volos, University of Thessaly Press, 2015. 8 p. Available at: http://8gracm.mie.uth.gr/Papers/Session%20D1-A1/A.%20Shimanovsky.pdf.
  • Fanning P. Nonlinear models of reinforced and post-tensioned concrete beams. Electronic Journal of Structural Engineering, 2001, no. 2, pp. 111–119. Available at: http://www.ejse.org/Archives/Fulltext/200102/02/20010202.doc.
  • Limkatanyu S., Spacone E. Reinforced concrete frame element with bond interfaces. Part 1: Displacement-Based, Force-Based and Mixed Formulations, 2002, vol. 128, no. 3, pp. 346–355.
  • Pleskachevskii Yu.M., Shimanovskii A.O., Kuzemkina G.M. Finite-Element Modeling of the Interaction of Reinforcement with Concrete Matrix. Mechanics of Composite Materials, 2008, vol. 44, no. 3, pp. 209–214.
  • Pleskachevskiy Yu.M., Shimanovsky A.O., Kuziomkina H.M., Yakubovich V.I. Modelirovanie mehanicheskogo vzaimodejstvija armatury s matricej kompozita [Modeling of Mechanical Interaction of Reinforcement with Matrix Composite]. Mehanika mashin, mehanizmov i materialov [Mechanics of machines, mechanisms and materials], 2009, no. 1, pp. 67–71.
  • Kuziomkina H.M., Shimanovsky А.О., Yakubovich V.I. The Special Features of the Deformation for the Bearing Building Constructions with Composite Reinforcement. Procedia Engineering, 2012, vol. 48, pp. 346–351.
  • Jin L., Du X.-L. Meso numerical simulation of reinforced concrete members. Shuili Xuebao, 2012, vol. 43, no. 10, pp. 1230–1242.
  • Vlasov V.M., Bertov V.M., Dolgachev A.D., Donov A.V., Lugovoj A.N. Ispol’zovanie betonnyh balok, armirovannyh stal’noj i stekloplastikovoj armaturoj [Using concrete beams reinforced with steel and fiberglass reinforcement]. Izvestija Vserossijskogo nauchno-issledovatel’skogo instituta gidrotehniki imeni B.E. Vedeneeva [Proceedings of the All-Russian Research Institute of Hydraulic Engineering named B.E. Vedeneev], 2005, vol. 244, pp. 33–38.
  • Blaznov A.N., Volkov Yu.P., Lugovoy A.N., Savin V.F. Prognozirovanie dlitel’noj prochnosti stekloplastikovoj armatury [Prediction of fiberglass reinforcement long-term strength]. Mehanika kompozicionnyh materialov i konstrukcij [Mechanics of composite materials and structures], 2003, vol. 9, no. 4, pp. 579–592.

Title of the article

MECHANOSYNTHESIS OF COMPOSITE Fe/SiC POWDERS FOR MAGNETIC ABRASIVE TREATMENT

Authors

VITYAZ Petr A., Academician of the NAS of Belarus, Dr. Techn. Sc., Professor, Head of the Staff of the NAS of Belarus, Presidium of the NAS of Belarus, Minsk, The Republic of Belarus

ZHORNIK Victor I., Dr. Techn. Sc., Associate Professor, Deputy Head of the department of mechanical engineering and metallurgy technologies, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, The Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

KOVALEVA Svetlana A., Senior Researcher of the Laboratory of Nanostructural and Superhard Materials, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, The Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

KHOMICH Nikolay S., Cand. Techn. Sc., Leading Researcher of the Laboratory of Nanostructural and Superhard Materials, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, The Republic of Belarus

GRIGOREVA Tatyana F., Dr. Chem. Sc., Leading Researcher, Institute of Solid State Chemistry and Mechanochemistry, Novosibirsk, Russia

In the section TECHNOLOGICAL MECHANICS
Year 2016 Issue 1 Pages 52-57
Type of article RAR Index UDK 621.762.2 Index BBK  
Abstract

The results of investigation of structure evolution of powder composition of Fe/SiC during mechanical activation (MA) are described. It is shown that the mechono-composite Fe/SiC is formed by treatment of the composition of Fe/SiC powders in the mill with energy intensity of I = 3 W/g during a short time. The main stages of microstructure formation of the composite Fe/SiC powders include crushing, deformation mixing, submicrostructure fragmentation of components and forming of globular microstructure. The alignment of the phase composition and size range of the particles of mechano-composites Fe/SiC and SiC inclusions takes place during 60 minutes of the MA. The SiC particle size is decreased from 40–180 microns to 0,3–2 microns. The formation of the Fe/SiC composite by MA during 60 minutes occurs without significant interaction between the components.

Keywords

magnetic abrasive treatment, magnetic abrasive composites, mechanical activation, mechanosynthesis, microstructure, mechanocomposites, planetary ball mill

  You can access full text version of the article.
Bibliography
  • LaRoux K. Gillespie. Chapter 20: Magnetic-Abrasive Finishing. From Mass Finishing Handbook. Publisher, Industrial Press, 2006, pp. 371–401.
  • Homich N.S. Magnitno-abrazivnaya obrabotka izdelij [Magneto-abrasive treatment of products]. Minsk, BNTU, 2006. 218 p.
  • Ncpomnyashchii V.V., Voloshchenko S.M., Mosina Т.V., Gogacv K.A., Askerov M.G., Miropolskiy A.V. Metal Surface Finishing with magnetic abrasive powder based on Iron with Ceramic Refractory Compounds (Mechanical Mixtures). Refractories and Industrial Ceramics, 2014, vol. 54, no. 6, pp. 471–474.
  • Yodkaew Тh., Morakotjinda M., Tosangthum N., Coovattanachai Or., Krataitong R., Siriphol P., Vetayanugul Bh., Chakthin S., Poolthong N., Tongsri R. Sintered Fe-Al2O3 and Fe-SiC Composites. Journal of Metals, Materials and Minerals, 2008, vol. 18, no. 1, pp. 57–61.
  • Lomovskiy O.I. ed. Mekhanokompozity – prekursory dlya sozdaniya materialov s novymi svojstvami [Mechanocomposites — precursors for the creation of materials with new properties]. Novosibirsk, Izd-vo SO RAN, no. 26, 2010. 432 p.
  • Khodaei M., Enayati M.H., Karimzadeh F. Mechanochemically Synthesized Metallic-Ceramic Nanocomposite; Mechanisms and Properties. In book Advances in Nanocomposites-Synthesis, Characterization and Industrial Applications. InTech., 2011, pp. 157–180.
  • Iasonna A., Magini M. Power measurements during mechanical milling. An experimental way to investigate the energy transfer phenomena. Acta Materialia, vol. 44, 1996, no. 3, pp. 1109–1117
  • Balzar В. Voight-function model in diffraction line-broadening analysis. Microstructure Analysis from Diffraction. International Union of Crystallography, 1999.
  • Davis R.M., Koch С.С. Mechanical alloying of brittle components: silicon and germanium. Scripta Metall., 1987, vol. 21, pp. 305–310.
  • Benjamin J.S. Mechanical alloying. Sci. Amer., 1976, vol. 234, no. 5, pp. 40–48.
  • Roman O.V., Arunachalam B.C. eds. Aktual’nye problemy poroshkovoj metallurgii [Actual problems of powder metallurgy]. Moscow, Metallurgiya 1990. 232 p.

Title of the article

FORECASTING OF THE RESIDUAL RESOURCE OF GEAR DRIVES BASED ON THE VIBRATIONPULSE DIAGNOSTICS

Authors

ISHIN Nikolay N., Dr. Techn. Sc., Associate Professor, Director of the Science and Technical Centre “Quarry Machinery”, Joint Institute of Mechanical Engineering of the National Academy of Sciences of Belarus, Minsk, The Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

GOMAN Arcadiy M., Cand. Techn. Sc., Associate Professor, Head of the Department of Dynamic Analysis and Vibration Diagnostic of Machines, Joint Institute of Mechanical Engineering of the National Academy of Sciences of Belarus, Minsk, The Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

SKOROKHODOV Andrey S., Cand. Techn. Sc., Leading Researcher of the Department of Dynamic Analysis and Vibration Diagnostic of Machines, Joint Institute of Mechanical Engineering of the National Academy of Sciences of Belarus, Minsk, The Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.

NATUREVA Marina K., Researcher of the Department of Dynamic Analysis and Vibration Diagnostic of Machines, Joint Institute of Mechanical Engineering of the National Academy of Sciences of Belarus, Minsk, The Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

ADASHKEVICH Vladimir I., Head of the Sector of Electric Drive and Control and Measuring Systems, Joint Institute of Mechanical Engineering of the National Academy of Sciences of Belarus, Minsk, The Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section ENGINEERING COMPONENTS
Year 2016 Issue 1 Pages 36-40
Type of article RAR Index UDK 629.3 Index BBK  
Abstract

The results of a comprehensive theoretical and experimental studies of shock interaction of the toothed profiles in relation to problems of vibration transmission systems of mobile machines are presented. While the determination technique of the actual parameters of gear wheels, as well as residual life of gears according to the results of vibration monitoring in operation has been used.

Keywords

mobile machine, transmission, technical condition, vibrating monitoring, technique, shock pulse, contact stresses, residual resource

  You can access full text version of the article.
Bibliography
  • Ishin N.N., Goman A.M., Skorohodov A.S., Natureva M.K. Ocenka ostatochnogo resursa zubchatyh peredach v uslovijah jekspluatacii [Evaluation of residual life of tooth gears in operation]. Nerazrushajushhij kontrol’ i diagnostika [Nondestructive control and diagnostics], 2014, no. 2, pp. 38–47.
  • Ishin N.N., Goman A.M., Skorohodov A.S., Natureva M.K. Priblizhennyj metod opredelenija parametrov udarnogo vibroimpul’sa zubchatogo zaceplenija [Approximate method of determining the parameters of impact vibrational impulse of gearing]. Nauka i tehnika. Mezhdunarodnyj nauchno-tehnicheskij zhurnal [Science and technology. International scientific and technical journal]. Minsk, BNTU, 2012, no. 3, pp. 63–66.
  • Ishin N.N., Goman A.M., Skorohodov A.S. Issledovanie udarnogo vzaimodejstvija prjamozubyh zubchatyh koljos primenitel’no k zadacham vibrodiagnostiki. Spektral’nyj analiz udarnyh impul’sov zubchatoj peredachi [Investigation of shock interaction of spur gears in relation to problems of vibration diagnostics. Spectral analysis of shock pulse gear]. Zhurnal “Vesci NAN Belarusi. Sjer. Fiz.-tjehn. navuk” [Journal“News of the NAS of Belarus. Series of physical-technical sciences”], 2012, no. 2, pp. 53–59.
  • Pavlov B.V. Akusticheskaja diagnostika mehanizmov [Acoustic diagnostics of mechanisms]. Moscow, Mashinostroenie, 1971. 220 p.
  • GOST 21354 – 87. Peredachi zubchatye cilindricheskie jevol’ventnye vneshnego zaceplenija. Raschet na prochnost’ [State Standard 21354 – 87. Cylindrical gears involute of external engagement. Strength analysis]. Moscow, Izd-vo standartov, 1988. 125 p.
  • Ishin N.N., Goman A.M., Skorohodov A.S. Ocenka fakticheskogo kojefficienta perekrytija prjamozubyh zubchatyh peredach [Estimate of the actual coefficient of overlap of spur gears]. Mehanika mashin, mehanizmov i materialov [Mechanics of machines, mechanisms and materials], 2013, no. 2(23), pp. 24–29.
  • Ishin N.N., Goman A.M., Skorohodov A.S. Metodika analiticheskogo rascheta fakticheskogo kojefficienta perekrytija prjamozubyh zubchatyh peredach [Technique of analytical calculation of actual overlap rate of spur gears]. Mezhdunarodnyj simpozium “Teorija i praktika zubchatyh peredach” [International symposium “Theory and practice of gears”]. Izhevsk, 2014, pp. 550–555.
  • Ishin N.N. Dinamika i vibromonitoring zubchatyh peredach [Dynamics and vibration monitoring of gears]. Minsk, Belarus. Navuka, 2013. 432 p.
  • Ishin N.N., Goman A.M., Skorohodov A.S., Gavrilov S.A. Prognozirovanie ostatochnogo resursa [Prediction of residual life]. Vestnik mashinostroenija [Journal of mechanical engineering], 2015, no. 2, pp. 21–25.