Title of the article

NON-STATIONARY WAVES IN THREE COMPONENT VISCOELASTIC BAR

Authors

MAMMADHASANOV Elkhan H., Ph. D. in Phys.-Math., Assoc. Prof., Azerbaijan Technical University, Baku, Azerbaijan, E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section MECHANICS OF DEFORMED SOLIDS
Year 2016 Issue 3 Pages 80-86
Type of article RAR Index UDK 539.374 Index BBK  
Abstract

In the paper we obtain exact analytic solutions of a problem on longitudinal shock on a thin, piecewise-homogeneous linear visco-elastic bar consisting of three parts of finite length h1(0 < x < l1), h2(l1 < x < l2) and a semi-infinite length (l2 < x < ∞), that are connected with rigid contact conditions, the mechanical properties of these parts are described by linear integral relations with the same, arbitrary difference kernels. The problem is solved by using the Laplace integral transform, while inverse transform are found by using the Efros generalized theorem, specially designed functions and tables of inverse transforms. New mechanical effects were obtained by numerical analysis.

Keywords

longitudinal stock, nonstationary values, stress, piecewise-homogeneous bar, linear viscoelasticity, creeping kernel, integral transformation

  You can access full text version of the article
Bibliography
  • Lee E.H. and Kanter I. Wave propagation in finite rods of viscoelastic material. Journal of applied physics, 1953, vol. 24, pp. 1115-1122.
  • Zverev I.N. Rasprostranenie vozmusheniy v vyazko-upruqom i vyazkoplasticheskom sterjne [Propagation of perturbations in the visco-elastic and viscoplastic bar]. Prikladnaya matematika i mekhanika [Applied Mathematics and Mechanics], 1950, vol. 14, no. 3, pp. 295-302.
  • Bland D.R. Nonlinear dynamic elasticity. Waltham, Blaisdell Publishing Company, 1969. 93 p.
  • Ishlinskiy a.Yu. Prodolnie kolebaniya sterjnyapri nalichii lineynoqo zakona posledeystviya i relaksacii [The longitudinal vibrations of a rod in the presence of a linear law aftereffect and relaxation]. Prikladnaya matematika i mekhanika [Applied Mathematics and Mechanics], 1940, vol. 4, no 1, pp. 79-92.
  • Christensen R.M. Theory of Viscoelasticity: An Introduction. Second Edition. New York-London, Academic Press, 1982. 364 p.
  • Sabodash P.F. Rasprostranenie prodolnykh vyazkoupruqykh voln v trekhsloynoy srede [The propagation of longitudinal viscoelastic waves in a theree-layer medium]. Mekhanika polimerov [Mechanics of polymers], 1971, no. 1, pp. 151-156.
  • Chu B.T. Stress wave in isotropic linear viscoelastic materials. J. Mecanique, 1962, vol. 1, no. 1, pp. 439-462.
  • Lee T.M. Spherical waves in viscoelastic media. Journal of the Acoustical Society of America, 1964, vol. 36, no. 12, pp. 2402-2407.
  • Berry D.S., Hunter S.C. The propagation of dynamic stress in viscoelastic rods. Journal of Mechanics and Physics of Solids, 1956, vol. 4, no. 2, pp. 72-95.
  • Lokshin a.a., Suvorova Yu.V. Matematicheskaya teoriya rasprostranenia voln v sredakh s pamyatyu [The mathematical theory of wave propagation in media with memory]. Moscow, izd-vo MQU, 1982. 152 p.
  • Filippov I.Q., eqorichev o.a. Volnovie processi v lineynikh vyazkoupruqikh sredakh [Wave processes in linear viscoelastic media]. Moscow, Mashinostroenie, 1983. 269 p.
  • Belov M.a., Bogdanovich a.B. Chislennoe obrashenie preobrazovaniya Laplasa metodom asimptoticheskoqo rasshireniya intervala v dinamicheskikh zadachakh vyazkoupruqosti [Numerical inversion of the Laplace transform method of asymptotic expansion slot in the dynamic viscoelasticity problems]. Mekhanikapolymerov [Mechanics of polymers], 1976, no 15, pp. 864-870.
  • Kokoshvili S.M., Muzichenko V.P., Tamuj V.P. Chislennoe reshenie zadachi ob udare jestkoy massi po vyazkoupruqomu sterjnyu konechnoy dliny [Numerical solution of the problem of the impact of a rigid mass by a viscoelastic rod of finite length]. Prikladnaya mekhanika [Applied mechanics], 1973, no. 3, pp. 450-466.
  • Koltunov M.a., Mayborda V.P., Zubchaninov V.Q. Prochnostnie raschetiizdeliyiz polimernikh materialov [Structural analyzes of products from polymeric materials]. Moscow, Mashinostroenie, 1983. 239 p.
  • Kukudjanov V.N. odnomernie zadachi rasprostraneniya voln napryajeniy v sterjnyakh [One-dimensional problem of propagation of stress waves in rods]. Soobsheniya poprikladnoy matematike[Reports on Applied Mathematics]. Moscow, VC aN SSSR, 1977, no. 7. 56 p.
  • Pobedrya B.e. Chislennie metodi v teorii upruqosti i plastichnosti [Numerical methods in the theory of elasticity and plasticity]. Uchebnoe posobie [Tutorial]. Moscow, izd-vo MQU, 1995, 2-e isdanie. 366 p.
  • Lubliner J. Cylindrical wave in a viscoelastic solid. Journal of the Acoustical Society of America, 1962, vol. 34, no. 11, pp. 1706-1710.
  • Sun C.T. Transient wave propagation in viscoelastic rods. Journal of Applied Mechanics, 1970, vol. 37(4), pp. 1141-1144.
  • Qonsovskiy V.a., Meshkov S.I., Rossikhin Yu.a. Udar vyazkoupruqoqo sterjnyao jestkuyu preqradu [Beat viscoelastic rod of a rigid barrier]. Prikladnaya Mekhanica [Applied mechanics], 1972, vol. 8, no. 10, pp. 71-76.
  • Arenz R.J. Uniaxial Wave Propagation in Realistic Viscoelastic Matherials. Journal of Applied Mechanics, 1964, vol. 31(1), pp. 17-21.
  • Qayduk S.I., Dobrushkin V.a. Reshenieodnoy zadachi oprodolnom udare poupruqo-vyazko-relaksiruyushemu sterjnyu [Solution of a problem of longitudinal impact on viscoelastic-relaxing rod]. Izvestiya aN BSSR, ser. fiz.-mat. nauk. [Proceedings of the Academy of Sciences of the BSSR, a series of physical and mathematical sciences], 1975, no. 6, pp. 30-41.
  • Krickaya S.S., Roqach D.I. Matematicheskoe rassmotrenie zadachi oprodolnom udare sterjnya pri nalichii zakona Bolcmana-Voltera [Mathematical consideration of the problem of longitudinal impact on a rod in the presence of the Boltzmann-Volterra law]. Izvestiya VUZov. Matematika [Proceedings of the universities. Mathematics], 1980, no. 4, pp. 47-52.
  • oqibalov P.M., Lomakin V.a., Kishkin B.P. Mekhanika polimerov [Mechanics of polymers]. Moscow, izd-vo MQU, 1975. 528 p.
  • Moskvitin V.V. Soprotivlenie vyazkoupruqikh materialov [Resistance viscoelastic materials]. Moscow, Nauka, 1972. 328 p.
  • Achenbach D., Reddy R. Note on wave propagation in linearly viscoelastic media. ZAMP, 1967, vol. 18, pp. 141-144.
  • Maksudov F.Q., Ilyasov M.Kh. ob odnom metode resheniya dinamicheskikh zadach lineynoy vyazkoupruqosti s requlyarnimi nasledstvennimi yadrami [A method for solving dynamic problems of linear viscoelasticity with regular hereditary kernels]. DaN SSSR [Reports of the USSR Academy of Sciences], 1981, vol. 260, no. 6, pp. 1332-1335.
  • Maksudov F.Q., Ilyasov M.Kh. ob odnom metode resheniya dinamicheskikh zadach lineynoy vyazkoupruqosti s neproporsionalnimi funksiyami relaksacii [A method for solving dynamic problems linear viscoelastic with disproportionate relaxation functions]. DaN SSSR [Reports of the USSR Academy of Sciences], 1983, vol. 273, no. 3, pp. 564-567.
  • Ilyasov M.Kh. Nekotorie dinamicheskie zadachi lineynoy vyazkoupruqosti. Diss. dotk. fiz.-mat. nauk. [Some dynamic problems linear viscoelasticity. Dr. phys. and math. sci. diss.]. Moscow, 1985. 251 p.
  • Zelenev V.M., Polenov V.S. Volny naprajenia v sostavnom polubeskonechnom sterjne [Waves of voltage in the composite semi-infinite rod]. Prikladnaya matematika I tekhniceskaya physika [Applied Mathematics and Technical Physics], Novosibirsk, 1971, no. 4, pp. 116-120.
  • Il’yasov M.Kh., Mamedqasanov E.G. Volni napryajeniy v sostavnom polubeskonecnom nasledstvenno upruqom sterjne [Stress Wave in the semi-infinite hereditarily elastic rod]. Sb. dokl. mejd. konf. «Aktualniye problemi fundamentalnikh nauk» [Proceedings of the international conference “Actual problems of fundamental sciences”], Moscow, izd-vo MGTU, 1991, pp. 82-85.
  • Lavrentiev M.A., Shabat B.V. Metody teorii funksii kompleksnoqo peremennoqo [Methods of the theory of complex variable functions]. Moscow, Nauka, 1973. 749 p.