Title of the article

CALCULATION OF ELASTIC DEFLECTIONS OF THIN STIFF PLATES BASED ON THE FINITE ELEMENTS METHOD OUT OF THE KIRCHHOFF’S THEORY

Authors

GEVORGYAN Hrant A., Ph. D. in Eng., Researcher, Institute of Mechanics of the National Academy of Sciences of the Republic of Armenia, Yerevan, Republic of Armenia, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section MECHANICS OF DEFORMED SOLIDS
Year 2017 Issue 1 Pages 39–44
Type of article RAR Index UDK 621-01 Index BBK  
Abstract

In this article numerical results, obtained by the FEM planе-spatial problem solution, in the case of an elastic flexion problem about rectangular freely supported under action of evenly distributed load of homogeneous and isotropic thin stiff plates, are discussed. A comparison analysis of results, generated, on the one side, without respect of the Kirchhoff’s hypothesis, and, on the other side, by the Navier’s method within the limits of the Kirchhoff’s hypothesis justify respecting to this class of problems a high efficiency of the FEM new modification compared to the methods using the Kirchhoff’s hypothesis.

Keywords

finite element method, Navier’s method, Kirchhoff’s theory, plane-spatial problem, normal invariability hypothesis, thin stiff plates, membranes, relative function of deflections

   You can access full text version of the article
Bibliography
  • Gevorgyan H. Plosko-prostranstvennaja zadacha metoda konechnyh jelementov [A Plane-Spatial Problem in the Finite Element Method]. Mehanika mashin, mehanizmov i materialov [Mechanics of machines, mechanisms and materials], 2014, no. 1(26), pp. 49–52.
  • Zienkiewicz O. Metod konechnyh jelementov v tehnike [The Finite Element Method in Engineering Science]. Moscow, 1977.
  • Bathe K.J., Wilson E.L. Numerical Methods in Finite Element Analysis. Englewood Cliffs, Prentice-Hall, 1976.
  • Reddy J.N. An Introduction to the Finite Element Method. New York, McGraw-Hill, 2006.
  • Daryl L. Logan. A First Course in the Finite Element Method. Nelson Engineering, 2011.
  • Morozov N.F., Tovstik P.Е., Tovstik T.P. Obobshhennaja model’ Timoshenko–Rejssnera dlja mnogoslojnoj plastiny [Generalized model of Tomoshenko–Reissner for multiplayer plate]. Izv. RAN. Mehanika tverdogo tela [News of the RAS. Mechanics of Solids], 2016, no. 5, pp. 22–35.
  • Zveriaev Е.М. Neprotivorechivaja teorija tonkih uprugih obolochek [Noncontradictory theory of thin elastic shells]. Prikladnaja matematika i mehanika [Applied mathematics and mechanics], 2016, no. 5, pp. 580–596.
  • Conley R., Delaney T.J., Jiao X. Overcoming element quality dependence of finite elements with adaptive extended stencil FEM. Int. J. for Num. Meth. In Eng., 2016, vol. 108, no. 9, pp. 1054–1085.
  • Natarajan S., Bordas S., Ooi E.T. Virtual and smoothed finite elements: A connection and its application to polygonal/polyhedral finite element methods. Int. J. for Num. Meth. In Eng., 2015, vol. 104, no. 13, pp. 1173–1199.
  • Alvares Dias L., Vampa V., Martin M.T. The construction of plate finite elements using wavelet basis functions. Revista investigacion operacional, 2009, vol. 30, no. 3, pp. 193–204.
  • Timoshenko S. Plastinki i obolochki [Theory of Plates and Shells]. Moscow, 1964.
  • Love А. Matematicheskaja teorija uprugosti [A Treatise on the Mathematical Theory of Elasticity]. Moscow, 1944.
  • Feodosiev V. Soprotivlenie materialov [Strength of Materials]. Moscow, 1970.
  • Demidov S. Teorija uprugosti [Theory of Elasticity]. Moscow, 1979.
  • Nowacki B. Teorija uprugosti [Theory of Elasticity]. Moscow, 1975.
  • Gevorgyan H. Traktovka geometricheskogo smysla konechnyh raznostej i proizvodnoj funkcii na osnove ispolzovanija apparata MKJe [An Interpretation of the Geometric Meaning of the Finite Difference and the Function Derivative Through the Use of the Finite Element Method Tools]. Mehanika mashin, mehanizmov i materialov [Mechanics of machines, mechanisms and materials], 2016, no. 2(35), pp. 95–98.
  • Teregulov I. K teorii plastin srednej tolshhiny [Theory of plates of medium thickness]. Trudy konf. po teorii plastin i obolochek [Proc. Conf. on the Theory of Plates and Shells]. Kazan, 1961, pp. 367–375.