Title of the article

THERMOELASTIC DEFORMATION OF THREE-LAYER CIRCULAR PLATE BY A SURFACE LOADS OF VARIOUS FORMS

Authors

STAROVOITOV Eduard I., D. Sc. in Phys. and Math., Prof., Head of the Department “Structural Mechanics”, Belarusian State University of Transport, Gomel, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

LEONENKO Denis V., D. Sc. in Phys. and Math., Assoc. Prof., Professor of the Department “Structural mechanics”, Belarusian State University of Transport, Gomel, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section DEFORMABLE SOLIDS MECHANICS
Year 2018 Issue 1 Pages 81–88
Type of article RAR Index UDK 539.3 Index BBK  
Abstract

The formulation of the boundary value problem of axisymmetric deformation of circular elastic steel thickness of the plate under the action of uniformly distributed and parabolic loads is given. The effect of a thermal field on the SSS of a plate is considered. For the asymmetric in thickness three-layer plate we have accepted the kinematic hypothesis of a broken normal. In the thin external layers the Kirchhoff’s hypotheses are accepted. The filler is no compressible through thickness. It’s normal subject to the Tymoshenko hypothesis. The work of arising shear stresses is taken into account. The equations of equilibrium in terms of displacements of the rod were obtained by the Variational method. At the ends of the plate the presence of rigid diaphragms is assumed to prevent the relative shift of the layers. On the bordering surfaces of the layers requires a gluing. The analytical solution of the boundaryvalue problem in the case of a distributed load was obtained. The case of uniformly distributed and parabolic loads was considered. The numerical analysis of the solutions is given.

Keywords

circular sandwich plate, parabolic loads, thermal field, analytical solution, numerical analysis

  You can access full text version of the article.
Bibliography
  • Bolotin V.V., Novichkov Yu.N. Mekhanika mnogosloinykh konstruktsii [Mechanics of Layered Structures]. Moscow, Mashinostroenie, 1980. 375 p.
  • Golovko K.G., Lugovoj P.Z., Mejsh V.F. Dinamika neodnorodnyh obolochek pri nestacionarnyh nagruzkah [The Dynamics of Inhomogeneous Shells under Transient Load Condiions]. Kiev, Kievskij universitet, 2012. 541 p.
  • Pleskatshevskiy U.M., Starovoitov E.I., Yarovaya A.V. Deformirovanie metallopolimernyh sistem [Strain of Metal-Polymeric Systems]. Minsk, Belaruskaja navuka, 2004. 342 p.
  • Gorshkov A.G., Starovoitov E.I., Leonenko D.V. Kolebanija trehslojnyh sterzhnej pod dejstviem lokalnyh nagruzok razlichnyh form [Vibrations of Sandwich Beams under the Action of Local Loads of the Different Forms]. Ekologicheskiy
    vestnik nauchnyh centrov Chernomorskogo ekonomicheskogo sotrudnichestva
    [Ecological bulletin of scientific centers of the Black Sea Economic Cooperation], 2004, no. 1, pp. 45–52.
  • Pleskatshevsky Y.M., Starovoitov E.I., Leonenko D.V. Dinamika krugovyh metallopolimernyh plastin na uprugom osnovanii. Ch. 1: Svobodnye kolebanija [Dynamics of Circular Metal-polymeric Plates on Elastic Foundation. Part 1. Free
    Vibrations]. Mehanika mashin, mehanizmov i materialov [Mechanics of Machines, Mechanisms and Materials], 2008, no. 4(4), pp. 48–52.
  • Pleskatshevsky Y.M., Starovoitov E.I., Leonenko D.V. Dinamika krugovyh metallopolimernyh plastin na uprugom osnovanii. Ch. II. Vynuzhdennye kolebanija [Dynamics of Circular Metal-polymeric Plates on Elastic Foundation. Part 2.
    Forced Vibrations]. Mehanika mashin, mehanizmov i materialov [Mechanics of Machines, Mechanisms and Materials], 2009, no. 1(5), pp. 48–51.
  • Starovoitov E.I., Leonenko D.V. Resonant Effects of Local Loads on Circular Sandwich Plates on Elastic Foundation. International applied mechanics, 2010, vol. 46, no. 1, pp. 86–93.
  • Starovoitov E.I., Leonenko D.V., Yarovaya A.V. Vibration of a Sandwich Rod under Local and Impulsive Forces. International Applied Mechanics, 2005, vol. 41, no. 7, pp. 809–816.
  • Starovoitov E.I., Leonenko D.V., Pleskatshevsky Y.M. Kolebanija trehslojnyh cilindricheskih obolochek v uprugoj srede Vinklera pri rezonanse [Vibrations of the Threelayered Cylindrical Shells in the Elastic Winkler’s Medium at Resonance]. Mehanika mashin, mehanizmov i materialov [Mechanics of Machines, Mechanisms and Materials], 2013, no. 4(22), pp. 70–73.
  • Ivañez I., Moure M.M., Garcia-Castillo S.K., Sanchez-Saez S. The Oblique Impact Response of Сomposite Sandwich Plates. Composite Structures, 2015, no. 133, pp. 1127–1136.
  • Grover N., Singh B.N., Maiti D.K. An Inverse Trigonometric Shear Deformation Theory for Supersonic Flutter Characteristics of Multilayered Composite Plates. Aerospace Science and Technology, 2016, vol. 52, pp. 41–51.
  • Tarlakovskiy D.V., Fedotenkov G.V. Analytic Investigation of Features of Stresses in Plane Nonstationary Contact Problems with Moving Boundaries. Journal of Mathematical Sciences, 2009, vol. 162, no. 2, pp. 246–253.
  • Kuznetsova E.L., Tarlakovskii D.V., Fedotenkov G.V. Propagation of Unsteady Waves in an Elastic Layer. Mechanics of Solids, 2011, vol. 46, no. 5, pp. 779–787.
  • Tarlakovskii D.V., Fedotenkov G.V. Nonstationary 3D Motion of an Elastic Spherical Shell. Mechanics of Solids, 2015, vol. 50, no. 2, pp. 208–217.
  • Tarlakovskii D.V., Fedotenkov G.V. Two-Dimensional Nonstationary Contact of Elastic Cylindrical or Spherical Shells. Journal of Machinery Manufacture and Reliability, 2014, vol. 43, no. 2, pp. 145–152.
  • Škec L., Jelenić G. Analysis of a Geometrically Exact Multilayer Beam with a Rigid Interlayer Connection. Acta Mechanica, 2014, vol. 225, no. 2, pp. 523–541.
  • Kulikov G.M., Plotnikova S.V. Аdvanced Formulation for Laminated Composite Shells: 3D Stress Analysis and Rigidbody Motions. Composite Structures, 2013, vol. 95, pp. 236–246.
  • Gorshkov A.G., Starovoitov E.I., Leonenko D.V., Yarovaya A.V. Deformirovanie trehslojnoj krugovoj plastiny na uprugom osnovanii [Strain of Circle Sandwich Plate on Elastic Foundation]. Ekologicheskiy vestnik nauchnyh centrov
    Chernomorskogo ekonomicheskogo sotrudnichestva
    [Ecological bulletin of scientific centers of the Black Sea Economic Cooperation], 2005, no. 1, pp. 16–22.
  • Zhuravkov M.A., Starovoitov E.I., Leonenko D.V. Nelinejnoe deformirovanie uprugoplasticheskogo trehslojnogo sterzhnja lokalnoj nagruzkoj [The second deformation of the three-layer elastoplastic rod by local load]. Mehanika mashin, mehanizmov i materialov [Mechanics of Machines, Mechanisms and Materials], 2016, no. 3(36), pp. 71–79.
  • Starovoitov E.I., Leonenko D.V. Deformirovanie trehslojnogo sterzhnja v temperaturnom pole [Deformation of Three-layer Beam in a Temperature Field]. Mehanika mashin, mehanizmov i materialov [Mechanics of Machines, Mechanisms and Materials], 2013, no. 1(6), pp. 31–35.
  • Starovoitov E.I. Description of the Thermomechanical Properties of Some Structural Materials. Strength of materials, 1988, vol. 20, no. 4, pp. 426–431.