Bibliography |
- Kryzhevich G.B. Integralnye kriterii razrusheniya v chislennykh raschetakh nizkotemperaturnoy prochnosti konstruktsiy morskoy tekhniki [Integral failure criteria in numerical lowtemperature strength calculations of marine facilities]. Transactions of the Krylov State Research Centre, 2018, no. 1(383), pp. 29–42 (in Russ.).
- Matvienko Yu.G. Modeli i kriterii mekhaniki razrusheniya [Fracture mechanics models and criteria]. Moscow, Fizmatlib Publ., 2006. 328 p. (in Russ.).
- Zhu X.K., Joyce J.A. Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization. Engineering fracture mechanics, 2012, vol. 85, pp. 1–46. DOI: https://doi.org/10.1016/j.engfracmech.2012.02.001.
- Tanabe Y. Fracture toughness for brittle fracture of elastic and plastic materials. Materials transactions, 2013, vol. 54, iss. 3, pp. 314–318. DOI: https://doi.org/10.2320/matertrans.M2012348.
- Kornev V.M. Obobshchennyy dostatochnyy kriteriy prochnosti. Opisanie zony predrazrusheniya [Generalized sufficient strength criterion. Description of the fracture process zone]. Prikladnaya mekhanika i tekhnicheskaya fizika, 2002, vol. 43, no. 5, pp. 153–161 (in Russ.).
- Seweryn A. Brittle fracture criterion for structures with sharp notches. Engineering fracture mechanics, 1994, vol. 47, iss. 5, pp. 673–681. DOI: https://doi.org/10.1016/0013-7944(94)90158-9.
- Palombo M., Sandon S., De Marco M. An evaluation of size effect in CTOD-SENB fracture toughness tests. Procedia engineering, 2015, vol. 109, pp. 55–64. DOI: https://doi.org/10.1016/j.proeng.2015.06.207.
- Bažant Z.P., Jirásek M. Nonlocal integral formulations of plasticity and damage: survey of progress. Journal of engineering mechanics, 2002, vol. 128, iss. 11, pp. 1119–1149. DOI: https://doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1119).
- Rabczuk T. Computational methods for fracture in brittle and quasi-brittle solids: state-of-the-art review and future perspectives. Applied mathematics, 2013, vol. 2013. DOI: https://doi.org/10.1155/2013/849231.
- Linkov A.M. Poterya ustoychivosti, kharakternyy lineynyy razmer i kriteriy Novozhilova–Neybera v mekhanike razrusheniya [loss of stability, characteristic length, and Novozhilov-Neuber criterion in fracture mechanics]. Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela, 2010, no. 6, pp. 98–111 (in Russ.).
- Vasil’ev I.A., Sokolov S.A. Elastoplastic state of stress of a plate with a crack. Russian metallurgy (Metally), 2020, iss. 10, pp. 1065–1069. DOI: https://doi.org/10.1134/S0036029520100316.
- Sokolov S.A., Vasil’ev I.A., Grachev A.A. Mathematical model for the elastoplastic state of stress of the material at the crack tip. Russian metallurgy (Metally), 2021, iss. 4, pp. 347–350. DOI: https://doi.org/10.1134/S0036029521040315.
- Sokolov S.A., Tulin D.E. Modeling of elastoplastic stress states in crack tip regions. Physical mesomechanics, 2021, vol. 24, iss. 3, pp. 237–242. DOI: https://doi.org/10.1134/S1029959921030024.
- Sokolov S.A., Tulin D.E. Mathematical model of brittle fracture of a cracked part. Physical mesomechanics, 2022, vol. 25, iss. 1, pp. 72–79. DOI: https://doi.org/10.1134/S1029959922010088.
- Kopelman L.A. Osnovy teorii prochnosti svarnykh konstruktsiy [Fundamentals of the theory of strength of welded structures]. Saint Petersburg, Lan Publ., 2010. 457 p. (in Russ.).
- Sokolov S., Tulin D., Vasiliev I. Investigation of the size of the fracture process zone and the cleavage stress in cracked steel parts. Fatigue & fracture of engineering materials & structures, 2023, vol. 46, iss. 3, pp. 1159–1169. DOI: https://doi.org/10.1111/ffe.13927.
- Sokolov S., Tulin D. Effect of intrinsic residual stresses on the brittle fracture resistance of a welded joint. Russian metallurgy (Metally), 2023, iss. 4, pp. 51–57.
|