Title of the article FORCE ANALYSIS OF PLAIN LEVER MECHANISMS BY VECTOR METHOD
Authors

KOTOV Andrey V., M. Sc. in Eng., Leading Design Engineer, JSC “Seismotekhnika”, Gomel, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section DYNAMICS, DURABILITY OF VEHICLES AND STRUCTURES
Year 2024
Issue 2(67)
Pages 36–43
Type of article RAR
Index UDK 621.83
DOI https://doi.org/10.46864/1995-0470-2024-2-67-36-43
Abstract An analytical method is presented for force analysis of plain lever mechanisms with one degree of freedom, based on the vector method. Using the example of a two-drive structural group, a method is outlined for finding reaction vectors in all its kinematic pairs, while maintaining the clarity and consistency of the solution inherent in the graphic-analytical method of diagrams of component forces. An original analytical description is given for finding the vectors of tangential and normal components of reactions in kinematic pairs. Application of the proposed method of force analysis makes it possisble to find reaction vectors in kinematic pairs without compiling and solving complex systems of equilibrium equations or graphical construction. Adaptation of the proposed force analysis in modern mathematical packages allows for the study of plain lever mechanisms with one degree of freedom in a short time and with high accuracy.
Keywords force analysis, vector method, lever mechanism, structural group, two-drive group, kinematic pair, tangential component of the reaction, normal component of the reaction
  You can access full text version of the article.
Bibliography
  1. Kozlovsky M.Z., et al. Teoriya mekhanizmov i mashin [Theory of mechanisms and machines]. Moscow, Akademiya Publ., 2008. 560 p. (in Russ.).
  2. Chernaya L.A., Timofeev G.A. Teoriya mekhanizmov i mashin [Theory of mechanisms and machines]. Moscow, MGTU im. N.E. Baumana Publ., 2019. 172 p. (in Russ.).
  3. Bertyaev V.D. Teoreticheskaya mekhanika na baze MathCAD. Praktikum [Theoretical mechanics based on MathCAD. Workshop]. Saint-Petersburg, BKhV-Peterburg Publ., 2005. 734 p. (in Russ.).
  4. Semenov Yu.A., Semenova N.S. Statika mekhanizmov [Statics of mechanisms]. Teoriya mekhanizmov i mashin, 2006, vol. 4, no. 2(8), pp. 47–58 (in Russ.).
  5. Kinytskyi Ya.T., Kharzhevskyi V.O., Marchenko M.V. Teoriya mekhanizmov i mashin v sisteme MathCAD [Theory of mechanisms and machines in the MathCAD system]. Khmelnytskyi, Khmelnitskiy natsionalnyy universitet Publ., 2014.
  6. Umbetkulov Y., et al. Dynamic force analysis of a six-link planar mechanism. MATEC Web of conferences, 2018, vol. 251. DOI: https://doi.org/10.1051/matecconf/201825104028.
  7. Dien N.P., Khang N.V. Dynamic force analysis of a six-link planar mechanism under consideration of friction at the joints. Vietnam journal of mechanics, 2004, vol. 26, no. 2, pp. 65–75. DOI: https://doi.org/10.15625/0866-7136/26/2/5690.
  8. Dyuzhev A.A., Kotov A.V., Chuprynin Yu.V. Obespechenie universalnosti navesnogo ustroystva energosredstva UES-2-250A “Polese” s tselyu sozdaniya selskokhozyaystvennykh agregatov modulnogo tipa [Ensuring the universality of the hinged device of the power facility UES-2-250A “Polesye” in order to create modular-type agricultural units]. Doklady Mezhdunarodnoy nauchno-prakticheskoy konferentsii “Energosberegayushchie tekhnologii i tekhnicheskie sredstva v selskokhozyaystvennom proizvodstve” [Proc. International scientific and practical conference “Energy-saving technologies and technical means in agriculture production”]. Minsk, 2008, part 1, pp. 78–84 (in Russ.).
  9. Bobyrenko S.V., Kotov A.V. Modelirovanie protsessa raboty mekhanizma podpressovki pitayushchego apparata kormouborochnogo kombayna [The simulation of the operation of pre-pressing mechanism of the feed unit of the fodder harvester]. Vestnik Belorussko-Rossiyskogo universiteta, 2011, no. 1(30), pp. 18–26 (in Russ.).
  10. Jasov D.V., Konyavskiy A.D., Shantyko A.S., Chuprynin Yu.V. Matematicheskaya model mekhanizma uravnoveshivaniya i podema kosilki-plyushchilki rotatsionnoy [Mathematical model of the mechanism for balancing and lifting the rotary windrower]. Aktualnye voprosy mashinovedeniya, 2020, vol. 9, pp. 27–30 (in Russ.).
  11. Kotov A.V. Optimizatsiya parametrov predokhranitelnogo elementa palchikovogo mekhanizma shneka zhatki zernouborochnogo kombayna [The optimization of parameters of a safety element of the finger mechanism of the header auger of a combine harvester]. Tractors and agricultural machinery, 2023, vol. 90, no. 1, pp. 13–24. DOI: https://doi.org/10.17816/0321-4443-114970 (in Russ.).
  12. Artobolevskiy I.I. Teoriya mekhanizmov i mashin [Theory of mechanisms and machines]. Moscow, Nauka Publ., 1988. 640 p. (in Russ.).
  13. Kanatnikov A.N., Krishchenko A.P. Analiticheskaya geometriya [Analytical geometry]. Moscow, MGTU im. N.E. Baumana Publ., 2000. 388 p. (in Russ.).
  14. Epikhin V.E. Analiticheskaya geometriya i lineynaya algebra. Teoriya i reshenie zadach [Analytical geometry and linear algebra. Theory and problem solving]. Moscow, KNORUS Publ., 2021. 609 p. (in Russ.).
  15. Voskoboynikov Yu.E., Zadorozhnyy A.F. Osnovy vychisleniy i programmirovaniya v pakete MathCAD PRIME [Basics of calculations and programming in the package MathCAD PRIME]. Saint Petersburg, Lan Publ., 2023. 224 p. (in Russ.).