Title of the article USING FLAME SPRAYING TECHNOLOGY IN THE MANUFACTURE OF TOOLS WITH ABRASIVE-CONTAINING POLYMER COATING
Authors

BELOTSERKOVSKY Marat A., D. Sc. in Eng., Prof., Head of the Laboratory of Gas-Thermal Methods of Machine Component Hardening of the R&D Center “Mechanical Engineering Technologies and Processing Equipment”, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

GRISHCHENKO Anastasia O., Senior Lecturer of the Department “Engineering Technology”, Belarusian National Technical University, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

TARAN Igor I., Senior Researcher of the Laboratory of Gas-Thermal Methods of Machine Component Hardening of the R&D Center “Mechanical Engineering Technologies and Processing Equipment”, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section MECHANICAL ENGINEERING MATERIALS AND TECHNOLOGIES
Year 2024
Issue 4(69)
Pages 88–96
Type of article RAR
Index UDK 621.793
DOI https://doi.org/10.46864/1995-0470-2024-4-69-88-96
Abstract The possibility of forming abrasive-containing coatings based on ultra-high molecular weight polyethylene by flame spraying has been studied. Using the method of differential scanning calorimetry, it is shown that in the process of gas-flame spraying, particles do not reach the temperature range of thermal-oxidative destruction, and the basic structure of UHMWPE is preserved. The dependence of the adhesion strength of abrasive-containing coatings on their cooling rate and the composition of the propane-air mixture has been determined. Spraying modes have been determined for coatings containing abrasive particles from 0.3 to 1.2 mm, and coatings with abrasive from 10 to 100 μm. It is advisable to use the resulting coatings in the manufacture of various abrasive tools. It has been established that the introduction of a nanosized filler in the form of powdered diamond-containing charge ShA-A into the sprayed abrasive-polymer mixture makes it possible to increase the mechanical characteristics of coatings.
Keywords flame spraying of polymers, abrasive particles, adhesion strength of coatings, nanosized modifier
  You can access full text version of the article.
Bibliography
  1. Podashev D.B. Finishnaya obrabotka detaley elastichnymi polimerno-abrazivnymi instrumentami [Finishing of parts with elastic polymer-abrasive tools]. Irkutsk, Irkutskiy natsionalnyy issledovatelskiy tekhnicheskiy universitet Publ., 2018. 246 p. (in Russ.).
  2. Ispolzovanie almazov v abrazivnykh instrumentakh dlya aviakosmicheskoy promyshlennosti [The use of diamonds in abrasive tools for the aerospace industry]. 2015. Available at: https://rough-polished.expert/ru/expertise/96599.html (accessed November 7, 2023) (in Russ.).
  3. Tekhnologii proizvodstva almaznykh instrumentov: ot syrya do gotovogo produkta [Diamond tools production technologies: from raw materials to finished product]. Available at: https://doncristall.ru/stati/texnologii-proizvodstva-almaznyix-instrumentov- ot-syirya-do-gotovogo-produkta.html (accessed November 7, 2024) (in Russ.).
  4. Polirovalnye krugi i golovki na polimernykh svyazkakh BRUNI [Polishing wheels and heads on polymer bonds BRUNI]. Available at: http://www.abrasiv.ru/?page_id=2482 (accessed November 7, 2023) (in Russ.).
  5. Pini B.E., Krylov О.V., Khachikyan Е.A. Abrazivno-polimernye instrumenty dlya mekhanicheskoy obrabotki detaley [Scraping-polymeric tools for part machining]. Mashinostroenie i inzhenernoe obrazovanie, 2016, no. 2(47), pp. 18–23 (in Russ.).
  6. Chih A., Ansón-Casaos A., Puértolas J.A. Frictional and mechanical behavior of UHMWPE composite coatings. Tribology international, 2017, vol. 116, pp. 295–302. DOI: https://doi. org/10.1016/j.triboint.2017.07.027.
  7. Valueva M.I., Kolobkov A.S., Malakhovskiy S.S. Cverkhvysokomolekulyarnyy polietilen: rynok, svoystva, napravleniya primeneniya (obzor) [Ultra-high molecular weight polyethylene: market, properties, directions of application (review)]. Proceedings of VIAM, 2020, no. 3(87), pp. 49–57. DOI: https://doi.org/10.18577/2307-6046-2020-3-49-57 (in Russ.).
  8. Avepchenko V.A., Golovin S.I., Popovich L.G., Puzyakov A.A., Puzpyakov A.F. Napylenie sverkhvysokomolekulyarnogo polietilena dlya zashchity neftegazovogo i khimicheskogo oborudovaniya ot vozdeystviya agressivnykh sred [Spraying ultra-high molecular weight polyethylene to protect oil and gas and chemical equipment from the effects of aggressive environments]. Svarochnoe proizvodstvo, 2007, no. 7, pp. 36–40 (in Russ.).
  9. Korobov Y., Belotserkovsky M. Flame spraying of polymers: distinctive features of the equipment and coating applications. Methodologies and applications for analytical and physical chemistry, 2018, ch. 14, pp. 267–283.
  10. Dorozhkin V.P., Galimova E.M. Khimiya i fizika polimerov [Chemistry and physics of polymers]. Nizhnekamsk, Nizhnekamskiy khimiko-tekhnologicheskiy institut (filial) FGBOU VPO “KNITU” Publ., 2013. 240 p. (in Russ.).
  11. Khasanov E.R., Kamaletdinov R.R., Maskulov D.I., Musin R.Z. Razrabotka operatsionnoy tekhnologii predposevnoy obrabotki semyan kozlyatnika eksperimentalnym skarifikatorom [Development of operational technology for preseeding treatment of seeds of goatline with experimental scarificator]. Vestnik Bashkir State Agrarian University, 2020, no. 1(53), pp. 142–148. DOI: https://doi.org/10.31563/1684-7628-2020-53-1-142-148 (in Russ.).
  12. Grishkevich A.A., Yuditsky A.Yu. Rezultaty issledovaniy, opredelyayushchie kriticheskie rezhimy shlifovaniya drevesiny [Research results that determine the critical modes of wood grinding]. Proceedings of BSTU. Issue 1. Forestry. Nature management. Processing of renewable resources, 2020, no. 2(234), pp. 336–342 (in Russ.).
  13. Аlеksееv G.V., Vоrоnеnkо B.A., Kharitonov D.V., Lеu A.G. Model teplovoy nagruzki pri dinamicheskoy abrazivnoy obrabotke pishchevykh materialov [Model of the heat load under dynamic abrasive processing of food material]. Proceedings of the Voronezh State University of Engineering Technologies, 2016, no. 4, pp. 56–60. DOI: https://doi.org/10.20914/2310-1202-2016-4-56-60 (in Russ.).
  14. Belotserkovsky M.A., Chekulaev A.V. Vliyanie rezhimov gazoplamennogo napyleniya polimernymi shnurami na svoystva formiruemykh pokrytiy [Influence of flame spraying modes of polymer cord on the properties of coatings formed]. Vestnik of Polotsk State University. Part B. Industry. Applied sciences, 2014, no. 11, pp. 91–96 (in Russ.).
  15. Kablov V.F. Problemy sovremennoy tekhnologii polimerov [Problems of modern polymer technology]. Volgograd, Volzhskiy politekhnicheskiy institut (filial) Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta Publ., 2019. 325 p. (in Russ.).
  16. Belotserkovsky M.A., Grishchenko A.O., Taran I.I. Sposob izgotovleniya abrazivnogo instrumenta [Method for manufacturing abrasive tools]. Patent BY, no. 24049, 2023. Available at: https://search.ncip.by/database/index.php?pref=inv&lng= ru&page=3&target=43625 (accessed November 7, 2023) (in Russ.).
  17. Negrov D.A., Putintsev V.Yu. Vliyanie nizkochastotnoy modulyatsii na mekhanicheskie svoystva i tribotekhnicheskie kharakteristiki polimernykh kompozitsionnykh materialov [Influence of low-frequency modulation on mechanical properties and tribotechnical characteristics of polymer composite materials]. Polzunovskiy vestnik, 2021, no. 4, pp. 140–145. DOI: https://doi.org/10.25712/ASTU.2072-8921.2021.04.018 (in Russ.).
  18. Issledovanie protsessov triboelektrizatsii poroshkov [Research of processes of triboelectrization of powders]. Available at: https://helpiks.org/4-46539.html (accessed November 8, 2023) (in Russ.).
  19. Okhlopkova A.A., Okhlopkova T.A., Borisova R.V. Upravlenie protsessami strukturoobrazovaniya v polimernykh kompozitsionnykh materialakh na osnove SVMPE [Control of structure formation processes in polymer composite materials based on UHMWPE]. Nauka i obrazovanie, 2015, no. 2, pp. 85–90 (in Russ.).
  20. Varikov G.A., Drozd K.M., Zhornik V.I. Optimizatsiya protsessa gazotermicheskogo napyleniya polimernykh pokrytiy, modifitsirovannykh nanoalmazami [Optimization of the gas-thermal spray process polymeric coatings modified by nanoalamase]. Journal of civil protection, 2019, vol. 3, no. 1, pp. 23–31. DOI: https://doi.org/10.33408/2519-237X.2019.3-1.23 (in Russ.).
  21. Belotserkovsky M.A., Zhornik V.I., Dubkova V.I., Taran I.I. Kompozitsionnyy poroshkovyy sostav dlya gazoplamennogo napyleniya polimernykh pokrytiy [Composite powder composition for flame spraying of polymer coatings]. Patent BY, no. 24050, 2023. Available at: https://search.ncip.by/database/ index.php?pref=inv&lng=ru&page=3&target=43626 (accessed November 8, 2023) (in Russ.).