Title of the article The analytical model of the initial translational displacements of the tooth root in the linear elastic periodontal ligament
Authors

Bosiakov S.M., Candidate of Physical-Mathematical Sciences, Associate Professor, Associate Professor of the Department "Theoretical and Applied Mechanics", Belarusian State University, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

Mikhasev G.I., Doctor of Physical-Mathematical Sciences, Professor, Head of the Department of Bio and Nano Mechanics, Belarusian State University, Minsk, Republic of Belarus

In the section BIOMECHANICS
Year 2014 Issue 3 Pages 74-78
Type of article RAR Index UDK 539.3+612.311 Index BBK  
Abstract

The mathematical modeling of the stress-strain state of the periodontal ligament for the translational displacement of the tooth root is carried out. The tooth root is absolutely rigid body and the periodontal ligament has a constant thickness. The solution for the displacements of the periodontal ligament is formulated in the plane stress state conditions. The boundary conditions correspond to the translational motion of the root in the force direction. The external surface of the periodontal ligament in the tooth alveolus is fixed. The expressions for the displacements of the periodontium points depending on the radial and circumferential coordinates are obtained. Comparative analysis of the magnitudes of concentrated forces for a fixed translational displacement of the tooth root on the basis of the proposed analytical model and the models in the form of an incompressible periodontal circular paraboloid and hyperboloid is carried out.

Keywords periodontal ligament, translational displacement of the tooth root, stress-strain state of the periodontium, equilibrium of the tooth root in the periodontal ligament
  You can access full text version of the article
Bibliography
  • Cronau M. [et al.]. Biomechanical features of the periodontium: An experimental pilot study in vivo. Dentofacial Orthop, 2006, vol. 129, pp. 599
  • Ren Y., Jaap C., Kuijpers-Jagtman A. Optimum force magnitude for orthodontic tooth movement: a systematic literature review. Angle Orthod, 2003, vol. 73, pp. 86-92.
  • Tanne K. [et al.]. Patterns of initial tooth displacement associated with various root lengths and alveolar bone heights. Am. J. Dentofacial Orthop, 1991, vol. 100, pp. 66-71.
  • Ziegler A. [et al.]. Numerical simulation of the biomechanical behaviour of multirooted teeth. European Journal of Orthodontics, 2005, vol. 27, pp. 333-339.
  • Masella R.S., Meister M. Current concepts in the biology of orthodontic tooth movement. Am. J. Orthod. Dentofacial. Orthop, 2006, vol. 129, no. 4, pp. 458-468.
  • Wise G.E., King G.J. Mechanisms of tooth eruption and orthodontic tooth movement. J. Dent. Res., 2008, vol. 87, no. 5, pp. 414-434.
  • Bourauel C. [et al.]. Simulation of orthodontic tooth movements - a comparison of numerical models. J. Orofacial Orthoped, 1999, vol. 60, pp. 136-151.
  • Nagerl H., Kubein-Meesenburg D. Discussion: A FEM study for the biomechanical comparison of labial and palatal force application on the upper incisors. Fortschritte der Kieferorthopadie, 1993, vol. 54, pp. 229-230.
  • Nikolai R.J., Schweiker J.W.  Investigation of Root-Periodontium Interface Stresses and Displacements for Orthodontic Application. Exp. Mech., 1972, vol. 12, no. 9, pp. 406-413.
  • Dorow C., Sander F. G. Development of a model for the simulation of orthodontic load on lower first premolars using the finite element method. J. Orofac. Orthop, 2005, vol. 66, pp. 208-218.
  • Kawarizadeh A., Bourauel C., Jager A. Experimental and numerical determination of initial tooth mobility and material properties of the periodontal ligament in rat molar specimens. Eur. J. Orthod., 2003, vol. 25, pp. 569-578.
  • Provatidis C.G. A comparative FEM-study of tooth mobility using isotropic and anisotropic models of the periodontal ligament. Med. Eng. Physics., 2000, vol. 22, pp. 359-370.
  • Jones M. L. [et al.]. A validated finite element method study of orthodontic tooth movement in the human subject. J. Orthod., 2001, vol. 28, pp. 29-38.
  • Cattaneo P.M., Dalstra M., Melsen B. The finite element method: a tool to study orthodontic tooth movement. J. Dent Res., 2005, vol. 84, pp. 428-433.
  • Pietrzak G. [et al.]. A nonlinear elastic model of the periodontal ligament and its numerical calibration for the study of tooth mobility. Comput. Methods Biomech. Biomed. Eng, 2002, vol. 5, pp. 91-100.
  • Clement R. [et al.]. Quasi-automatic 3D finite element model generation for individual single-rooted teeth and periodontal ligament. Comput. Methods Programs Biomed., 2004, vol. 73, pp. 135-144.
  • Vollmer D. [et al.]. Determination of the center of resistance in an upper human canine and idealized tooth model. Eur. J. Orthod, 1999, vol. 21, pp. 633-648.
  • Provatidis C.G. An analytical model for stress analysis of a tooth in translation. Int. J. Eng. Sci., 2001, vol. 39, pp. 1361-1381.
  • Van Schepdael A., Geris L., Van der Sloten J. Analytical determination of stress patterns in the periodontal ligament during orthodontic tooth movement. Med. Eng. Phys., 2013, vol. 35, pp. 403-410.
  • Naumovich S.A., Krushevskij A.E. Biomehanika sistemy "zub-periodont" [Biomechanics of the system "tooth - periodontal"], Minsk, Jekonomich. tehnologii, 2000. 132 p.
  • Bosiakov S.M., Yurkevich K.S. Mathematical modelling of initial tooth root displacements in bone tissue under action of instant static loading. Rus. J. Biomech., 2011, vol. 15, pp. 22-29.
  • Nikolai R.J. Periodontal ligament reaction and displacements of a maxillary central incisor subjected to transverse crown loading. J. Biomech., 1974, vol. 7, pp. 93-99.
  • Dudar O.I. [et al.]. Distribution of masticatory load over dental arch during central occlusion. Russ. J. Biomech., 2009, vol. 13, pp. 56-62.
  • Viecilli R.F., Budiman A., Burstone C.J. Axes of resistance for tooth movement: Does the center of resistance exist in 3-dimensional space? Am. J. Orthod. Dentofacial Orthop., 2013, vol. 143, pp.163-172.
  • Reimann S. [et al.]. Biomechanical finite-element investigation of the position of the center of resistance of the upper incisors. Eur. J. Orthod., 2007, vol. 29, pp. 219-224.
  • Jeon P.D. [et al.]. Analysis of stress in the periodontium of the maxillary first molar with a three-dimensional finite element model. Am. J. Orthod. Dentofacial Orthop., 1999, vol. 115, pp. 267-274.
  • Rees J.S., Jacobsen P.H. Elastic modulus of the periodontal ligament. Biomaterials, 1997, vol. 18, pp. 995-999.
  • Kawarizadeh A., Bourauel C., Jager A. Experimental and numerical determination of initial tooth mobility and material properties of the periodontal ligament in rat molar specimens. Eur. J. Orthod., 2003, vol. 25, pp. 569-578.
  • Mihasev G.I., Slavashevich I.L. Sobstvennye chastoty kolebatel'noj sistemy srednego uha pri total'noj rekonstrukcii [The natural frequencies of the oscillating system of the middle ear with total reconstruction]. Vestn. S.-Pb. un-ta [Herald of Saint-Petersburg University], 2012, no. 3, pp. 107-116.
  • Bosjakov S.M., Krupoderov A.V., Mselati A.F. Opredelenie centra soprotivlenija dlja kornja zuba v forme krugovogo giperboloida [Determination of the center of resistance of a tooth root in the form of a circular hyperboloid]. Vestn. BGU [Journal BSU], 2014, no. 1, pp. 72-77.
  • Toms S.R. [et al.]. Nonlinear stress-strain behavior of periodontal ligament under orthodontic loading. Am. J. Orthod. Dentofacial Orthop., 2002, vol. 122, pp. 174-179.
  • Bourauel C., Vollmer D., Jager A. Application of Bone Remodeling Theories in the Simulation of Orthodontic Tooth Movements. J. Orofac. Orthop., 2000, vol. 61, no. 4, pp. 266-279.
  • Qian Y. [et al.]. Numerical simulation of tooth movement in a therapy period. Clinic. Biomech., 2008, vol. 23, pp. 48-52.